These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot. Zhang J; Liu Q; Zhou J; Song A Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001 [No Abstract] [Full Text] [Related]
3. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching. Badri-Spröwitz A; Aghamaleki Sarvestani A; Sitti M; Daley MA Sci Robot; 2022 Mar; 7(64):eabg4055. PubMed ID: 35294220 [TBL] [Abstract][Full Text] [Related]
4. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training. Canete S; Jacobs DA J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729 [TBL] [Abstract][Full Text] [Related]
5. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion. Aoi S; Katayama D; Fujiki S; Tomita N; Funato T; Yamashita T; Senda K; Tsuchiya K J R Soc Interface; 2013 Apr; 10(81):20120908. PubMed ID: 23389894 [TBL] [Abstract][Full Text] [Related]
6. Control and study of bio-inspired quadrupedal gaits on an underactuated miniature robot. Askari M; Ugur M; Mahkam N; Yeldan A; Ozcan O Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36608346 [TBL] [Abstract][Full Text] [Related]
7. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs. Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ Front Robot AI; 2018; 5():67. PubMed ID: 33500946 [TBL] [Abstract][Full Text] [Related]
8. An arm for a leg: Adapting a robotic arm for gait rehabilitation. Franchi G; Viereck U; Platt R; Yen SC; Hasson CJ Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3929-32. PubMed ID: 26737153 [TBL] [Abstract][Full Text] [Related]
9. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain. Song G; Ai Q; Tong H; Xu J; Zhu S Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613 [TBL] [Abstract][Full Text] [Related]
10. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance. Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931 [TBL] [Abstract][Full Text] [Related]
11. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot. Mahkam N; Özcan O Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650 [TBL] [Abstract][Full Text] [Related]
12. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. Vallery H; van Asseldonk EH; Buss M; van der Kooij H IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320 [TBL] [Abstract][Full Text] [Related]
13. A reflexive neural network for dynamic biped walking control. Geng T; Porr B; Wörgötter F Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061 [TBL] [Abstract][Full Text] [Related]
14. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot. Moro FL; Spröwitz A; Tuleu A; Vespignani M; Tsagarakis NG; Ijspeert AJ; Caldwell DG Biol Cybern; 2013 Jun; 107(3):309-20. PubMed ID: 23463501 [TBL] [Abstract][Full Text] [Related]
15. Motion synthesis and force distribution analysis for a biped robot. Trojnacki MT; Zielińska T Acta Bioeng Biomech; 2011; 13(2):45-56. PubMed ID: 21761810 [TBL] [Abstract][Full Text] [Related]
16. Sideways crab-walking is faster and more efficient than forward walking for a hexapod robot. Chen Y; Grezmak JE; Graf NM; Daltorio KA Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35439747 [TBL] [Abstract][Full Text] [Related]
17. Asymmetrical gait kinematics of free-ranging callitrichine primates in response to changes in substrate diameter and orientation. Dunham NT; McNamara A; Shapiro LJ; Phelps T; Young JW J Exp Biol; 2020 Jun; 223(Pt 12):. PubMed ID: 32414871 [TBL] [Abstract][Full Text] [Related]
18. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems. Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222 [TBL] [Abstract][Full Text] [Related]
19. The gaits of marsupials and the evolution of diagonal-sequence walking in primates. Cartmill M; Brown K; Atkinson C; Cartmill EA; Findley E; Gonzalez-Socoloske D; Hartstone-Rose A; Mueller J Am J Phys Anthropol; 2020 Feb; 171(2):182-197. PubMed ID: 31762016 [TBL] [Abstract][Full Text] [Related]
20. The grazing gait, and implications of toppling table geometry for primate footfall sequences. Usherwood JR; Smith BJH Biol Lett; 2018 May; 14(5):. PubMed ID: 29769299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]