These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31869869)

  • 21. Superadiabatic Forces via the Acceleration Gradient in Quantum Many-Body Dynamics.
    Brütting M; Trepl T; de Las Heras D; Schmidt M
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles.
    Chakraborti S; Mishra S; Pradhan P
    Phys Rev E; 2016 May; 93(5):052606. PubMed ID: 27300950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonequilibrium Phase Behavior from Minimization of Free Power Dissipation.
    Krinninger P; Schmidt M; Brader JM
    Phys Rev Lett; 2016 Nov; 117(20):208003. PubMed ID: 27886496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictive local field theory for interacting active Brownian spheres in two spatial dimensions.
    Bickmann J; Wittkowski R
    J Phys Condens Matter; 2020 May; 32(21):214001. PubMed ID: 31791019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase behavior and structure of a fluid confined between competing (solvophobic and solvophilic) walls.
    Stewart MC; Evans R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031601. PubMed ID: 23030923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow and Structure in Nonequilibrium Brownian Many-Body Systems.
    de Las Heras D; Schmidt M
    Phys Rev Lett; 2020 Jul; 125(1):018001. PubMed ID: 32678658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles.
    Ma Z; Ni R
    J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capillary interactions between particles bound to interfaces, liquid films and biomembranes.
    Kralchevsky PA; Nagayama K
    Adv Colloid Interface Sci; 2000 Mar; 85(2-3):145-92. PubMed ID: 10768480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting the phase behavior of mixtures of active spherical particles.
    van der Meer B; Prymidis V; Dijkstra M; Filion L
    J Chem Phys; 2020 Apr; 152(14):144901. PubMed ID: 32295380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System.
    Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G
    Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of dimensionality and geometry in quench-induced nonequilibrium forces.
    Nejad MR; Khalilian H; Rohwer CM; Moghaddam AG
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34186521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-body correlations and conditional forces in suspensions of active hard disks.
    Härtel A; Richard D; Speck T
    Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model.
    Patel S; Brooks CL
    J Chem Phys; 2005 Jan; 122(2):024508. PubMed ID: 15638599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Swim pressure on walls with curves and corners.
    Smallenburg F; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032304. PubMed ID: 26465470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion.
    Louis AA; Allahyarov E; Löwen H; Roth R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061407. PubMed ID: 12188722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of motility-induced phase separation and swim pressure.
    Patch A; Yllanes D; Marchetti MC
    Phys Rev E; 2017 Jan; 95(1-1):012601. PubMed ID: 28208385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhomogeneous steady shear dynamics of a three-body colloidal gel former.
    Sammüller F; de Las Heras D; Schmidt M
    J Chem Phys; 2023 Feb; 158(5):054908. PubMed ID: 36754804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pair-distribution function of active Brownian spheres in two spatial dimensions: Simulation results and analytic representation.
    Jeggle J; Stenhammar J; Wittkowski R
    J Chem Phys; 2020 May; 152(19):194903. PubMed ID: 33687241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-ideal diffusion effects, short-range ordering, and unsteady-state effects strongly influence Brownian aggregation rates in concentrated dispersions of interacting spheres.
    Kelkar AV; Franses EI; Corti DS
    J Chem Phys; 2015 Aug; 143(7):074706. PubMed ID: 26298147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleation pathway and kinetics of phase-separating active Brownian particles.
    Richard D; Löwen H; Speck T
    Soft Matter; 2016 Jun; 12(24):5257-64. PubMed ID: 27126952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.