These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 31869945)
1. Coupling of long-wavelength density fluctuations to orientations in cellulose nanocrystal suspensions under external fields. Kang K; Bertsch P; Fischer P Phys Rev E; 2019 Nov; 100(5-1):052606. PubMed ID: 31869945 [TBL] [Abstract][Full Text] [Related]
2. Solvent-dependent morphology and anisotropic microscopic dynamics of cellulose nanocrystals under electric fields. Kang K; Eremin A Phys Rev E; 2021 Mar; 103(3-1):032606. PubMed ID: 33862807 [TBL] [Abstract][Full Text] [Related]
3. Effect of Ionic Surfactants on the Viscoelastic Properties of Chiral Nematic Cellulose Nanocrystal Suspensions. Ranjbar D; Hatzikiriakos SG Langmuir; 2020 Jan; 36(1):293-301. PubMed ID: 31845815 [TBL] [Abstract][Full Text] [Related]
4. Ultrasensitive Magnetic Tuning of Optical Properties of Films of Cholesteric Cellulose Nanocrystals. Chen T; Zhao Q; Meng X; Li Y; Peng H; Whittaker AK; Zhu S ACS Nano; 2020 Aug; 14(8):9440-9448. PubMed ID: 32574040 [TBL] [Abstract][Full Text] [Related]
5. Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields. Tatsumi M; Kimura F; Kimura T; Teramoto Y; Nishio Y Biomacromolecules; 2014 Dec; 15(12):4579-89. PubMed ID: 25390070 [TBL] [Abstract][Full Text] [Related]
6. Twist elastic constant of chiral nematic cellulose nanocrystals determined by tactoid reconfiguration in electric field. Qu D; Zhang P; Liu J; Xu Y; Zussman E; Wei B Carbohydr Polym; 2024 Dec; 346():122650. PubMed ID: 39245509 [TBL] [Abstract][Full Text] [Related]
7. Distinct Chiral Nematic Self-Assembling Behavior Caused by Different Size-Unified Cellulose Nanocrystals via a Multistage Separation. Hu Y; Abidi N Langmuir; 2016 Sep; 32(38):9863-72. PubMed ID: 27584872 [TBL] [Abstract][Full Text] [Related]
8. The development of chiral nematic mesoporous materials. Kelly JA; Giese M; Shopsowitz KE; Hamad WY; MacLachlan MJ Acc Chem Res; 2014 Apr; 47(4):1088-96. PubMed ID: 24694253 [TBL] [Abstract][Full Text] [Related]
9. Anisotropic Diffusion and Phase Behavior of Cellulose Nanocrystal Suspensions. Van Rie J; Schütz C; Gençer A; Lombardo S; Gasser U; Kumar S; Salazar-Alvarez G; Kang K; Thielemans W Langmuir; 2019 Feb; 35(6):2289-2302. PubMed ID: 30672300 [TBL] [Abstract][Full Text] [Related]
10. SANS study of mixed cholesteric cellulose nanocrystal - gold nanorod suspensions. Van Rie J; González-Rubio G; Kumar S; Schütz C; Kohlbrecher J; Vanroelen M; Van Gerven T; Deschaume O; Bartic C; Liz-Marzán LM; Salazar-Alvarez G; Thielemans W Chem Commun (Camb); 2020 Nov; 56(85):13001-13004. PubMed ID: 32996921 [TBL] [Abstract][Full Text] [Related]
11. Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-ray Scattering and Laser Diffraction. Schütz C; Agthe M; Fall AB; Gordeyeva K; Guccini V; Salajková M; Plivelic TS; Lagerwall JP; Salazar-Alvarez G; Bergström L Langmuir; 2015 Jun; 31(23):6507-13. PubMed ID: 26020691 [TBL] [Abstract][Full Text] [Related]
12. Adjustment of the Chiral Nematic Phase Properties of Cellulose Nanocrystals by Polymer Grafting. Azzam F; Heux L; Jean B Langmuir; 2016 May; 32(17):4305-12. PubMed ID: 27054465 [TBL] [Abstract][Full Text] [Related]
13. Fiber Alignment and Liquid Crystal Orientation of Cellulose Nanocrystals in the Electrospun Nanofibrous Mats. Song W; Liu D; Prempeh N; Song R Biomacromolecules; 2017 Oct; 18(10):3273-3279. PubMed ID: 28925690 [TBL] [Abstract][Full Text] [Related]
14. Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. Cherhal F; Cousin F; Capron I Langmuir; 2015 May; 31(20):5596-602. PubMed ID: 25918887 [TBL] [Abstract][Full Text] [Related]
15. An electric-field induced dynamical state in dispersions of highly charged colloidal rods: comparison of experiment and theory. Kang K; Dhont JK Colloid Polym Sci; 2015; 293(11):3325-3336. PubMed ID: 26617428 [TBL] [Abstract][Full Text] [Related]
16. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals. Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589 [TBL] [Abstract][Full Text] [Related]
17. Capillary Flow Characterizations of Chiral Nematic Cellulose Nanocrystal Suspensions. Esmaeili M; George K; Rezvan G; Taheri-Qazvini N; Zhang R; Sadati M Langmuir; 2022 Feb; 38(7):2192-2204. PubMed ID: 35133841 [TBL] [Abstract][Full Text] [Related]
18. Chiral nematic nanocomposites with pitch gradient elaborated by filtration and ultraviolet curing of cellulose nanocrystal suspensions. Mandin S; Metilli L; Karrouch M; Lancelon-Pin C; Putaux JL; Chèvremont W; Paineau E; Hengl N; Jean B; Pignon F Carbohydr Polym; 2024 Aug; 337():122162. PubMed ID: 38710556 [TBL] [Abstract][Full Text] [Related]
19. Glass transition in suspensions of charged rods: structural arrest and texture dynamics. Kang K; Dhont JK Phys Rev Lett; 2013 Jan; 110(1):015901. PubMed ID: 23383809 [TBL] [Abstract][Full Text] [Related]
20. Cellulose Nanocrystals' Assembly under Ionic Strength Variation: From High Orientation Ordering to a Random Orientation. Bukharina D; Kim M; Han MJ; Tsukruk VV Langmuir; 2022 May; 38(20):6363-6375. PubMed ID: 35559606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]