These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31869963)

  • 1. Seeding approach to bubble nucleation in superheated Lennard-Jones fluids.
    Rosales-Pelaez P; Garcia-Cid MI; Valeriani C; Vega C; Sanz E
    Phys Rev E; 2019 Nov; 100(5-1):052609. PubMed ID: 31869963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seeding approach to nucleation in the NVT ensemble: The case of bubble cavitation in overstretched Lennard Jones fluids.
    Rosales-Pelaez P; Sanchez-Burgos I; Valeriani C; Vega C; Sanz E
    Phys Rev E; 2020 Feb; 101(2-1):022611. PubMed ID: 32168559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of bubble cavitation rates in a symmetrical Lennard-Jones mixture by NVT seeding simulations.
    Lamas CP; Sanz E; Vega C; Noya EG
    J Chem Phys; 2023 Mar; 158(12):124109. PubMed ID: 37003754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory.
    Bal KM; Neyts EC
    J Chem Phys; 2022 Nov; 157(18):184113. PubMed ID: 36379788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory.
    Baidakov VG
    J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous cavitation in a Lennard-Jones liquid at negative pressures.
    Baidakov VG; Bobrov KS
    J Chem Phys; 2014 May; 140(18):184506. PubMed ID: 24832287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory.
    Langenbach K; Heilig M; Horsch M; Hasse H
    J Chem Phys; 2018 Mar; 148(12):124702. PubMed ID: 29604838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seeding approach to crystal nucleation.
    Espinosa JR; Vega C; Valeriani C; Sanz E
    J Chem Phys; 2016 Jan; 144(3):034501. PubMed ID: 26801035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bubble evolution and properties in homogeneous nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivalence between condensation and boiling in a Lennard-Jones fluid.
    Sanchez-Burgos I; de Hijes PM; Rosales-Pelaez P; Vega C; Sanz E
    Phys Rev E; 2020 Dec; 102(6-1):062609. PubMed ID: 33466022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Jan; 134(2):024502. PubMed ID: 21241115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous nucleation and growth in simple fluids. I. Fundamental issues and free energy surfaces of bubble and droplet formation.
    Uline MJ; Torabi K; Corti DS
    J Chem Phys; 2010 Nov; 133(17):174511. PubMed ID: 21054055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics and kinetics of bubble nucleation: simulation methodology.
    Meadley SL; Escobedo FA
    J Chem Phys; 2012 Aug; 137(7):074109. PubMed ID: 22920105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of some nucleation theories with a nonsharp droplet-vapor interface.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2010 Oct; 133(15):154503. PubMed ID: 20969399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple improvements to classical bubble nucleation models.
    Tanaka KK; Tanaka H; Angélil R; Diemand J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022401. PubMed ID: 26382410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous nucleation and growth in simple fluids. II. Scaling behavior, instabilities, and the (n,v) order parameter.
    Uline MJ; Torabi K; Corti DS
    J Chem Phys; 2010 Nov; 133(17):174512. PubMed ID: 21054056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.
    Tanaka KK; Tanaka H; Yamamoto T; Kawamura K
    J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.