These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31870001)

  • 1. Machine learning dynamical phase transitions in complex networks.
    Ni Q; Tang M; Liu Y; Lai YC
    Phys Rev E; 2019 Nov; 100(5-1):052312. PubMed ID: 31870001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning epidemic threshold in complex networks by Convolutional Neural Network.
    Ni Q; Kang J; Tang M; Liu Y; Zou Y
    Chaos; 2019 Nov; 29(11):113106. PubMed ID: 31779342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sampling-guided unsupervised learning method to capture percolation in complex networks.
    Mimar S; Ghoshal G
    Sci Rep; 2022 Mar; 12(1):4147. PubMed ID: 35264699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confusion scheme in machine learning detects double phase transitions and quasi-long-range order.
    Lee SS; Kim BJ
    Phys Rev E; 2019 Apr; 99(4-1):043308. PubMed ID: 31108697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finding nonlinear system equations and complex network structures from data: A sparse optimization approach.
    Lai YC
    Chaos; 2021 Aug; 31(8):082101. PubMed ID: 34470223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution.
    Zhuo Z; Cai SM; Tang M; Lai YC
    Chaos; 2018 Apr; 28(4):043119. PubMed ID: 31906645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised Machine Learning of Quantum Phase Transitions Using Diffusion Maps.
    Lidiak A; Gong Z
    Phys Rev Lett; 2020 Nov; 125(22):225701. PubMed ID: 33315426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning nonequilibrium statistical mechanics and dynamical phase transitions.
    Tang Y; Liu J; Zhang J; Zhang P
    Nat Commun; 2024 Feb; 15(1):1117. PubMed ID: 38321012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discriminative Cooperative Networks for Detecting Phase Transitions.
    Liu YH; van Nieuwenburg EPL
    Phys Rev Lett; 2018 Apr; 120(17):176401. PubMed ID: 29756840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of polymer configurations by unsupervised learning.
    Xu X; Wei Q; Li H; Wang Y; Chen Y; Jiang Y
    Phys Rev E; 2019 Apr; 99(4-1):043307. PubMed ID: 31108670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics.
    Chen YZ; Lai YC
    Phys Rev E; 2018 Mar; 97(3-1):032317. PubMed ID: 29776147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretable machine learning for inferring the phase boundaries in a nonequilibrium system.
    Casert C; Vieijra T; Nys J; Ryckebusch J
    Phys Rev E; 2019 Feb; 99(2-1):023304. PubMed ID: 30934273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptable reservoir computing: A paradigm for model-free data-driven prediction of critical transitions in nonlinear dynamical systems.
    Panahi S; Lai YC
    Chaos; 2024 May; 34(5):. PubMed ID: 38717410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing deep neural networks to solve inverse problems in quantum dynamics: machine-learned predictions of time-dependent optimal control fields.
    Wang X; Kumar A; Shelton CR; Wong BM
    Phys Chem Chem Phys; 2020 Oct; 22(40):22889-22899. PubMed ID: 32935687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online data-driven changepoint detection for high-dimensional dynamical systems.
    Lin S; Mengaldo G; Maulik R
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37831795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks.
    Palukuri MV; Marcotte EM
    bioRxiv; 2021 Oct; ():. PubMed ID: 34189530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tree-like Bayesian structure learning algorithm for small-sample datasets from complex biological model systems.
    Yin W; Garimalla S; Moreno A; Galinski MR; Styczynski MP
    BMC Syst Biol; 2015 Aug; 9():49. PubMed ID: 26310492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using machine learning to predict extreme events in complex systems.
    Qi D; Majda AJ
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):52-59. PubMed ID: 31871152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase behavior of continuous-space systems: A supervised machine learning approach.
    Jung H; Yethiraj A
    J Chem Phys; 2020 Aug; 153(6):064904. PubMed ID: 35287449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting depinning and nonequilibrium transitions with unsupervised machine learning.
    McDermott D; Reichhardt CJO; Reichhardt C
    Phys Rev E; 2020 Apr; 101(4-1):042101. PubMed ID: 32422707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.