These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 31870009)
1. Slope selection in unstable multilayer growth in 1+1 dimensions: Step flow models with downward funneling. Johnson I; Ratsch C; Gibou F; Margetis D Phys Rev E; 2019 Nov; 100(5-1):052802. PubMed ID: 31870009 [TBL] [Abstract][Full Text] [Related]
2. One-dimensional model of interacting-step fluctuations on vicinal surfaces: analytical formulas and kinetic Monte Carlo simulations. Patrone PN; Einstein TL; Margetis D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061601. PubMed ID: 21230676 [TBL] [Abstract][Full Text] [Related]
3. Theoretical analysis of mound slope selection during unstable multilayer growth. Li M; Evans JW Phys Rev Lett; 2005 Dec; 95(25):256101. PubMed ID: 16384474 [TBL] [Abstract][Full Text] [Related]
4. Emergence of local geometric laws of step flow in homoepitaxial growth. Johnson I; Margetis D Phys Rev E; 2022 Mar; 105(3-1):034802. PubMed ID: 35428142 [TBL] [Abstract][Full Text] [Related]
5. Emergence of step flow from an atomistic scheme of epitaxial growth in 1+1 dimensions. Lu J; Liu JG; Margetis D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032403. PubMed ID: 25871119 [TBL] [Abstract][Full Text] [Related]
6. Self-organization of decaying surface corrugations: a numerical study. Bonito A; Nochetto RH; Quah J; Margetis D Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):050601. PubMed ID: 19518406 [TBL] [Abstract][Full Text] [Related]
7. An examination of scaling behavior in unstable epitaxial mound growth via kinetic Monte Carlo simulations. Schneider JP; Margetis D; Gibou F; Ratsch C J Phys Condens Matter; 2019 Sep; 31(36):365301. PubMed ID: 31071698 [TBL] [Abstract][Full Text] [Related]
8. Island-dynamics model for mound formation: effect of a step-edge barrier. Papac J; Margetis D; Gibou F; Ratsch C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022404. PubMed ID: 25215739 [TBL] [Abstract][Full Text] [Related]
9. Scaling laws for step bunching on vicinal surfaces: Role of the dynamical and chemical effects. Benoit-Maréchal L; Jabbour ME; Triantafyllidis N Phys Rev E; 2021 Sep; 104(3-1):034802. PubMed ID: 34654115 [TBL] [Abstract][Full Text] [Related]
10. Phase field models for step flow. Pierre-Louis O Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021604. PubMed ID: 14524983 [TBL] [Abstract][Full Text] [Related]
11. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling. Li M; Han Y; Thiel PA; Evans JW J Phys Condens Matter; 2009 Feb; 21(8):084216. PubMed ID: 21817368 [TBL] [Abstract][Full Text] [Related]
12. Signature of microscale kinetics in mesoscale description of epitaxial growth. Schneider JP; Margetis D Phys Rev E; 2017 Aug; 96(2-1):020802. PubMed ID: 28950480 [TBL] [Abstract][Full Text] [Related]
13. STERIC HINDRANCE OF CRYSTAL GROWTH: NONLINEAR STEP FLOW IN 1+1 DIMENSIONS. Schneider JP; Patrone PN; Margetis D Physica D; 2018; 16(1):. PubMed ID: 32165775 [TBL] [Abstract][Full Text] [Related]
14. Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces. Xu D; Zapol P; Stephenson GB; Thompson C J Chem Phys; 2017 Apr; 146(14):144702. PubMed ID: 28411601 [TBL] [Abstract][Full Text] [Related]
15. Nonequilibrium effects in diffusion of interacting particles on vicinal surfaces. Masín M; Vattulainen I; Ala-Nissila T; Chvoj Z J Chem Phys; 2005 Jun; 122(21):214728. PubMed ID: 15974783 [TBL] [Abstract][Full Text] [Related]
16. Scaling of surface roughness in film deposition with height-dependent step edge barriers. Carrasco ISS; To TBT; Reis FDAA Phys Rev E; 2023 Dec; 108(6-1):064802. PubMed ID: 38243503 [TBL] [Abstract][Full Text] [Related]
17. Friction at atomic-scale surface steps: experiment and theory. Hölscher H; Ebeling D; Schwarz UD Phys Rev Lett; 2008 Dec; 101(24):246105. PubMed ID: 19113638 [TBL] [Abstract][Full Text] [Related]
18. Dynamic scaling in thin-film growth with irreversible step-edge attachment. Aarão Reis FD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041605. PubMed ID: 20481733 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of step bunching during growth: a minimal model. Slanina F; Krug J; Kotrla M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041605. PubMed ID: 15903680 [TBL] [Abstract][Full Text] [Related]
20. Effect of immobile impurities on motion of steps on a vicinal face. Sato M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061604. PubMed ID: 22304099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]