These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31870380)

  • 1. Study on the biomechanical responses of the loaded bone in macroscale and mesoscale by multiscale poroelastic FE analysis.
    Yu W; Wu X; Cen H; Guo Y; Li C; Wang Y; Qin Y; Chen W
    Biomed Eng Online; 2019 Dec; 18(1):122. PubMed ID: 31870380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-layered poroelastic slab model under cyclic loading for a single osteon.
    Chen Y; Wang W; Ding S; Wang X; Chen Q; Li X
    Biomed Eng Online; 2018 Jul; 17(1):97. PubMed ID: 30016971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the microcrack shape, size and direction on the poroelastic behaviors of a single osteon: a finite element study.
    Cen HP; Wu XG; Yu WL; Liu QZ; Jia YM
    Acta Bioeng Biomech; 2016; 18(1):3-10. PubMed ID: 27149885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale mechanical responses of young and elderly human femurs: A finite element investigation.
    Cen H; Yao Y; Liu H; Jia S; Gong H
    Bone; 2021 Dec; 153():116125. PubMed ID: 34280582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental determination of the permeability in the lacunar-canalicular porosity of bone.
    Gailani G; Benalla M; Mahamud R; Cowin SC; Cardoso L
    J Biomech Eng; 2009 Oct; 131(10):101007. PubMed ID: 19831477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poroelastic evaluation of fluid movement through the lacunocanalicular system.
    Goulet GC; Coombe D; Martinuzzi RJ; Zernicke RF
    Ann Biomed Eng; 2009 Jul; 37(7):1390-402. PubMed ID: 19415492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.
    Perrin E; Bou-Saïd B; Massi F
    J Mech Behav Biomed Mater; 2019 Mar; 91():373-382. PubMed ID: 30660050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Informing phenomenological structural bone remodelling with a mechanistic poroelastic model.
    Villette CC; Phillips AT
    Biomech Model Mechanobiol; 2016 Feb; 15(1):69-82. PubMed ID: 26534771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Osteocyte Shape on Fluid Flow and Fluid Shear Stress of the Loaded Bone.
    Yang F; Yu W; Huo X; Li H; Qi Q; Yang X; Shi N; Wu X; Chen W
    Biomed Res Int; 2022; 2022():3935803. PubMed ID: 35677099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale.
    Nguyen VH; Lemaire T; Naili S
    Med Eng Phys; 2010 May; 32(4):384-90. PubMed ID: 20226715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical basis for the determination of the lacunar-canalicular permeability of bone using cyclic loading.
    Benalla M; Cardoso L; Cowin SC
    Biomech Model Mechanobiol; 2012 Jul; 11(6):767-80. PubMed ID: 21959747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone.
    Gatti V; Azoulay EM; Fritton SP
    J Biomech; 2018 Jan; 66():127-136. PubMed ID: 29217091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of diameter, length and elastic modulus of a dental implant on stress and strain levels in peri-implant bone: A 3D finite element analysis.
    Robau-Porrua A; Pérez-Rodríguez Y; Soris-Rodríguez LM; Pérez-Acosta O; González JE
    Biomed Mater Eng; 2020; 30(5-6):541-558. PubMed ID: 31903978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multiscale meso-mechanics model of viscoelastic cortical bone.
    Chen Y; Wu R; Yang B; Wang G
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1713-1729. PubMed ID: 36057052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability.
    Pereira AF; Shefelbine SJ
    Biomech Model Mechanobiol; 2014 Jan; 13(1):215-25. PubMed ID: 23689800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytical poroelastic model of a spherical tumor embedded in normal tissue under creep compression.
    Islam MT; Righetti R
    J Biomech; 2019 May; 89():48-56. PubMed ID: 31000348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.