These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31870380)

  • 21. An analytical poroelastic model of a spherical tumor embedded in normal tissue under creep compression.
    Islam MT; Righetti R
    J Biomech; 2019 May; 89():48-56. PubMed ID: 31000348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Depth and strain rate-dependent mechanical response of chondrocytes in reserve zone cartilage subjected to compressive loading.
    Kazemi M; Williams JL
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1477-1493. PubMed ID: 33844092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.
    Ren L; Yang P; Wang Z; Zhang J; Ding C; Shang P
    J Mech Behav Biomed Mater; 2015 Oct; 50():104-22. PubMed ID: 26119589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon.
    Zeng Y; Cowin SC; Weinbaum S
    Ann Biomed Eng; 1994; 22(3):280-92. PubMed ID: 7978549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity.
    Mak AF; Huang DT; Zhang JD; Tong P
    J Biomech; 1997 Jan; 30(1):11-8. PubMed ID: 8970919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.
    Hamed E; Jasiuk I
    J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micromechanical modelling of cortical bone.
    Mullins LP; McGarry JP; Bruzzi MS; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):159-69. PubMed ID: 17558645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones.
    Cowin SC; Gailani G; Benalla M
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3401-44. PubMed ID: 19657006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.
    Nikkhoo M; Hsu YC; Haghpanahi M; Parnianpour M; Wang JL
    Proc Inst Mech Eng H; 2013 Jun; 227(6):672-82. PubMed ID: 23636748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic permeability of the lacunar-canalicular system in human cortical bone.
    Benalla M; Palacio-Mancheno PE; Fritton SP; Cardoso L; Cowin SC
    Biomech Model Mechanobiol; 2014 Aug; 13(4):801-12. PubMed ID: 24146291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relating age and micro-architecture with apparent-level elastic constants: a micro-finite element study of female cortical bone from the anterior femoral midshaft.
    Donaldson FE; Pankaj P; Cooper DM; Thomas CD; Clement JG; Simpson AH
    Proc Inst Mech Eng H; 2011 Jun; 225(6):585-96. PubMed ID: 22034742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poroelastic finite element analysis of a bone specimen under cyclic loading.
    Manfredini P; Cocchetti G; Maier G; Redaelli A; Montevecchi FM
    J Biomech; 1999 Feb; 32(2):135-44. PubMed ID: 10052918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
    Ganesh T; Laughrey LE; Niroobakhsh M; Lara-Castillo N
    Bone; 2020 Aug; 137():115328. PubMed ID: 32201360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae.
    Wang Y; Ural A
    J Biomech; 2020 Nov; 112():110041. PubMed ID: 32950759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Chemo-poroelastic Analysis of Mechanically Induced Fluid and Solute Transport in an Osteonal Cortical Bone.
    Jin ZH; Janes JG; Peterson ML
    Ann Biomed Eng; 2021 Jan; 49(1):299-309. PubMed ID: 32514933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An estimate of anisotropic poroelastic constants of an osteon.
    Yoon YJ; Cowin SC
    Biomech Model Mechanobiol; 2008 Feb; 7(1):13-26. PubMed ID: 17297632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.