BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31870409)

  • 1. RADAR: differential analysis of MeRIP-seq data with a random effect model.
    Zhang Z; Zhan Q; Eckert M; Zhu A; Chryplewicz A; De Jesus DF; Ren D; Kulkarni RN; Lengyel E; He C; Chen M
    Genome Biol; 2019 Dec; 20(1):294. PubMed ID: 31870409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MoAIMS: efficient software for detection of enriched regions of MeRIP-Seq.
    Zhang Y; Hamada M
    BMC Bioinformatics; 2020 Mar; 21(1):103. PubMed ID: 32171255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential RNA methylation using multivariate statistical methods.
    Ayyala DN; Lin J; Ouyang Z
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34586372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package.
    Meng J; Lu Z; Liu H; Zhang L; Zhang S; Chen Y; Rao MK; Huang Y
    Methods; 2014 Oct; 69(3):274-81. PubMed ID: 24979058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MeTDiff: A Novel Differential RNA Methylation Analysis for MeRIP-Seq Data.
    Cui X; Zhang L; Meng J; Rao MK; Chen Y; Huang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):526-534. PubMed ID: 29610101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential RNA methylation analysis for MeRIP-seq data under general experimental design.
    Guo Z; Shafik AM; Jin P; Wu H
    Bioinformatics; 2022 Oct; 38(20):4705-4712. PubMed ID: 36063045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and comparison of m6A modifications in glioblastoma non-coding RNAs with MeRIP-seq and Nanopore dRNA-seq.
    Krusnauskas R; Stakaitis R; Steponaitis G; Almstrup K; Vaitkiene P
    Epigenetics; 2023 Dec; 18(1):2163365. PubMed ID: 36597408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting m6A methylation regions from Methylated RNA Immunoprecipitation Sequencing.
    Guo Z; Shafik AM; Jin P; Wu Z; Wu H
    Bioinformatics; 2021 Sep; 37(18):2818-2824. PubMed ID: 33724304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refined RIP-seq protocol for epitranscriptome analysis with low input materials.
    Zeng Y; Wang S; Gao S; Soares F; Ahmed M; Guo H; Wang M; Hua JT; Guan J; Moran MF; Tsao MS; He HH
    PLoS Biol; 2018 Sep; 16(9):e2006092. PubMed ID: 30212448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. m6ACali: machine learning-powered calibration for accurate m6A detection in MeRIP-Seq.
    Ye H; Li T; Rigden DJ; Wei Z
    Nucleic Acids Res; 2024 May; 52(9):4830-4842. PubMed ID: 38634812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data.
    Cui X; Meng J; Zhang S; Chen Y; Huang Y
    Bioinformatics; 2016 Jun; 32(12):i378-i385. PubMed ID: 27307641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data.
    Cui X; Meng J; Zhang S; Rao MK; Chen Y; Huang Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):520. PubMed ID: 27556597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Transcriptomic Profiling of m6A Modification in Age-Related Hearing Loss.
    Feng M; Zhou X; Hu Y; Zhang J; Yang T; Chen Z; Yuan W
    Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of epitranscriptome-wide N6-methyladenosine differential analysis methods.
    Duan D; Tang W; Wang R; Guo Z; Feng H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37039682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validated Impacts of N6-Methyladenosine Methylated mRNAs on Apoptosis and Angiogenesis in Myocardial Infarction Based on MeRIP-Seq Analysis.
    Zhang Y; Hua W; Dang Y; Cheng Y; Wang J; Zhang X; Teng M; Wang S; Zhang M; Kong Z; Lu X; Zheng Y
    Front Mol Biosci; 2021; 8():789923. PubMed ID: 35155564
    [No Abstract]   [Full Text] [Related]  

  • 16. A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data.
    Zhang M; Li Q; Xie Y
    Quant Biol; 2018 Sep; 6(3):275-286. PubMed ID: 33833899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of N6-methyladenosine epitranscriptome profile in lipopolysaccharide-induced mouse mesangial cells.
    Liu T; Zhuang XX; Qin XJ; Wei LB; Gao JR
    Naunyn Schmiedebergs Arch Pharmacol; 2022 Apr; 395(4):445-458. PubMed ID: 35119478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition of RNA methylome reveals co-methylation patterns induced by latent enzymatic regulators of the epitranscriptome.
    Liu L; Zhang SW; Zhang YC; Liu H; Zhang L; Chen R; Huang Y; Meng J
    Mol Biosyst; 2015 Jan; 11(1):262-74. PubMed ID: 25370990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Funm6AViewer: a web server and R package for functional analysis of context-specific m6A RNA methylation.
    Zhang SY; Zhang SW; Tang Y; Fan XN; Meng J
    Bioinformatics; 2021 Nov; 37(22):4277-4279. PubMed ID: 33974000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HEPeak: an HMM-based exome peak-finding package for RNA epigenome sequencing data.
    Cui X; Meng J; Rao MK; Chen Y; Huang Y
    BMC Genomics; 2015; 16 Suppl 4(Suppl 4):S2. PubMed ID: 25917296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.