BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31870654)

  • 41. Might Starvation-Induced Adaptations in Muscle Mass, Muscle Morphology and Muscle Function Contribute to the Increased Urge for Movement and to Spontaneous Physical Activity in Anorexia Nervosa?
    Casper RC
    Nutrients; 2020 Jul; 12(7):. PubMed ID: 32664448
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activity Based Anorexia as an Animal Model for Anorexia Nervosa-A Systematic Review.
    Schalla MA; Stengel A
    Front Nutr; 2019; 6():69. PubMed ID: 31165073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa.
    Skowron K; Kurnik-Łucka M; Dadański E; Bętkowska-Korpała B; Gil K
    Nutrients; 2020 Aug; 12(9):. PubMed ID: 32867089
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessing Activity-based Anorexia in Mice.
    Welch AC; Katzka WR; Dulawa SC
    J Vis Exp; 2018 May; (135):. PubMed ID: 29806838
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing α4-GABAA receptor activity of hippocampal pyramidal cells.
    Wable GS; Chen YW; Rashid S; Aoki C
    Neuroscience; 2015 Dec; 310():322-41. PubMed ID: 26383252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Food matters: how the microbiome and gut-brain interaction might impact the development and course of anorexia nervosa.
    Herpertz-Dahlmann B; Seitz J; Baines J
    Eur Child Adolesc Psychiatry; 2017 Sep; 26(9):1031-1041. PubMed ID: 28144744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ghrelin treatment prevents development of activity based anorexia in mice.
    Legrand R; Lucas N; Breton J; Azhar S; do Rego JC; Déchelotte P; Coëffier M; Fetissov SO
    Eur Neuropsychopharmacol; 2016 Jun; 26(6):948-58. PubMed ID: 27052473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activity-based Anorexia for Modeling Vulnerability and Resilience in Mice.
    Beeler JA; Burghardt NS
    Bio Protoc; 2021 May; 11(9):e4009. PubMed ID: 34124309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia.
    Hebebrand J; Exner C; Hebebrand K; Holtkamp C; Casper RC; Remschmidt H; Herpertz-Dahlmann B; Klingenspor M
    Physiol Behav; 2003 Jun; 79(1):25-37. PubMed ID: 12818707
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identifying novel phenotypes of vulnerability and resistance to activity-based anorexia in adolescent female rats.
    Barbarich-Marsteller NC; Underwood MD; Foltin RW; Myers MM; Walsh BT; Barrett JS; Marsteller DA
    Int J Eat Disord; 2013 Nov; 46(7):737-46. PubMed ID: 23853140
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leptin treatment in activity-based anorexia.
    Hillebrand JJ; Koeners MP; de Rijke CE; Kas MJ; Adan RA
    Biol Psychiatry; 2005 Jul; 58(2):165-71. PubMed ID: 16038687
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Delayed gastric emptying and altered antrum protein metabolism during activity-based anorexia.
    Nobis S; Morin A; Achamrah N; Belmonte L; Legrand R; Chan P; do Rego JL; Vaudry D; Gourcerol G; Déchelotte P; Goichon A; Coëffier M
    Neurogastroenterol Motil; 2018 Jul; 30(7):e13305. PubMed ID: 29411462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atypical endogenous opioid systems in mice in relation to an auto-addiction opioid model of anorexia nervosa.
    Marrazzi MA; Mullings-Britton J; Stack L; Powers RJ; Lawhorn J; Graham V; Eccles T; Gunter S
    Life Sci; 1990; 47(16):1427-35. PubMed ID: 2250560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Vancomycin and Ciprofloxacin on the NMRI Mouse Metabolism.
    Liu Z; Xia B; Saric J; Utzinger J; Holmes E; Keiser J; Li JV
    J Proteome Res; 2018 Oct; 17(10):3565-3573. PubMed ID: 30183313
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fecal and urinary NMR-based metabolomics unveil an aging signature in mice.
    Calvani R; Brasili E; Praticò G; Capuani G; Tomassini A; Marini F; Sciubba F; Finamore A; Roselli M; Marzetti E; Miccheli A
    Exp Gerontol; 2014 Jan; 49():5-11. PubMed ID: 24184118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Can attention to the intestinal microbiota improve understanding and treatment of anorexia nervosa?
    Carr J; Kleiman SC; Bulik CM; Bulik-Sullivan EC; Carroll IM
    Expert Rev Gastroenterol Hepatol; 2016; 10(5):565-9. PubMed ID: 27003627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cost-based anorexia: A novel framework to model anorexia nervosa.
    Rowland NE; Atalayer D; Cervantez MR; Minaya DM; Splane EC
    Appetite; 2018 Nov; 130():50-58. PubMed ID: 30075177
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Animal Models for Anorexia Nervosa-A Systematic Review.
    Scharner S; Stengel A
    Front Hum Neurosci; 2020; 14():596381. PubMed ID: 33551774
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Activity-based anorexia is associated with reduced hippocampal cell proliferation in adolescent female rats.
    Barbarich-Marsteller NC; Fornal CA; Takase LF; Bocarsly ME; Arner C; Walsh BT; Hoebel BG; Jacobs BL
    Behav Brain Res; 2013 Jan; 236(1):251-257. PubMed ID: 22981561
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Colonic Mucosal Proteome Signature Reveals Reduced Energy Metabolism and Protein Synthesis but Activated Autophagy during Anorexia-Induced Malnutrition in Mice.
    Nobis S; Achamrah N; Goichon A; L'Huillier C; Morin A; Guérin C; Chan P; do Rego JL; do Rego JC; Vaudry D; Déchelotte P; Belmonte L; Coëffier M
    Proteomics; 2018 Aug; 18(15):e1700395. PubMed ID: 29938906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.