BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31870688)

  • 1. Reconfigurable 3D-Printed headplates for reproducible and rapid implantation of EEG, EMG and depth electrodes in mice.
    Zhu KJ; Aiani LM; Pedersen NP
    J Neurosci Methods; 2020 Mar; 333():108566. PubMed ID: 31870688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology.
    Brosch M; Vlasenko A; Ohl FW; Lippert MT
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896
    [No Abstract]   [Full Text] [Related]  

  • 3. OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice.
    Freedman DS; Schroeder JB; Telian GI; Zhang Z; Sunil S; Ritt JT
    J Neural Eng; 2016 Dec; 13(6):066013. PubMed ID: 27762238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using 3D-Printed Mesh-Like Brain Cortex with Deep Structures for Planning Intracranial EEG Electrode Placement.
    Javan R; Schickel M; Zhao Y; Agbo T; Fleming C; Heidari P; Gholipour T; Shields DC; Koubeissi M
    J Digit Imaging; 2020 Apr; 33(2):324-333. PubMed ID: 31512018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Inkjet Printed Flexible Electrocorticography (ECoG) Microelectrode Array on a Thin Parylene-C Film.
    Kim Y; Alimperti S; Choi P; Noh M
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel 3D-printed multi-driven system for large-scale neurophysiological recordings in multiple brain regions.
    Sheng T; Xing D; Wu Y; Wang Q; Li X; Lu W
    J Neurosci Methods; 2021 Sep; 361():109286. PubMed ID: 34242704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of deep brain activity with scalp and subdural EEG.
    Fahimi Hnazaee M; Wittevrongel B; Khachatryan E; Libert A; Carrette E; Dauwe I; Meurs A; Boon P; Van Roost D; Van Hulle MM
    Neuroimage; 2020 Dec; 223():117344. PubMed ID: 32898677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recording Forelimb Muscle Activity in Head-Fixed Mice with Chronically Implanted EMG Electrodes.
    Kristl AC; Akay T; Miri A
    J Vis Exp; 2024 Mar; (205):. PubMed ID: 38619242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.
    Márton G; Orbán G; Kiss M; Fiáth R; Pongrácz A; Ulbert I
    PLoS One; 2015; 10(12):e0145307. PubMed ID: 26683306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for chronic and semi-chronic microelectrode array implantation in deep brain structures using image guided neuronavigation.
    Mahmoudian B; Dalal H; Lau J; Corrigan B; Abbas M; Barker K; Rankin A; Chen ECS; Peters T; Martinez-Trujillo JC
    J Neurosci Methods; 2023 Sep; 397():109948. PubMed ID: 37572883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions.
    Headley DB; DeLucca MV; Haufler D; Paré D
    J Neurophysiol; 2015 Apr; 113(7):2721-32. PubMed ID: 25652930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile 3D-printed headstage implant for group housing of rodents.
    Pinnell RC; Almajidy RK; Hofmann UG
    J Neurosci Methods; 2016 Jan; 257():134-8. PubMed ID: 26456356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology.
    Delcasso S; Denagamage S; Britton Z; Graybiel AM
    Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale analysis of neural activity in humans: Implications for micro-scale electrocorticography.
    Kellis S; Sorensen L; Darvas F; Sayres C; O'Neill K; Brown RB; House P; Ojemann J; Greger B
    Clin Neurophysiol; 2016 Jan; 127(1):591-601. PubMed ID: 26138146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal microdrive and head cap system for silicon probe recovery in freely moving rodent.
    Vöröslakos M; Petersen PC; Vöröslakos B; Buzsáki G
    Elife; 2021 May; 10():. PubMed ID: 34009122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic unlimited recording electrocorticography-guided resective epilepsy surgery: technology-enabled enhanced fidelity in seizure focus localization with improved surgical efficacy.
    DiLorenzo DJ; Mangubat EZ; Rossi MA; Byrne RW
    J Neurosurg; 2014 Jun; 120(6):1402-14. PubMed ID: 24655096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel µECoG Electrode Interface for Comparison of Local and Common Averaged Referenced Signals.
    Williams AJ; Trumpis M; Bent B; Chiang CH; Viventi J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5057-5060. PubMed ID: 30441477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subdural Soft Electrocorticography (ECoG) Array Implantation and Long-Term Cortical Recording in Minipigs.
    Fallegger F; Trouillet A; Lacour SP
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 37067278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.