These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31870870)

  • 41. Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles.
    Qiu C; Wang C; Gong C; McClements DJ; Jin Z; Wang J
    Int J Biol Macromol; 2020 Jun; 152():117-125. PubMed ID: 32068064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphology and Characteristics of Starch Nanoparticles Self-Assembled via a Rapid Ultrasonication Method for Peppermint Oil Encapsulation.
    Liu C; Li M; Ji N; Liu J; Xiong L; Sun Q
    J Agric Food Chem; 2017 Sep; 65(38):8363-8373. PubMed ID: 28850780
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles.
    El-Naggar ME; El-Rafie MH; El-sheikh MA; El-Feky GS; Hebeish A
    Int J Biol Macromol; 2015 Nov; 81():718-29. PubMed ID: 26358550
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols.
    Shao P; Zhang H; Niu B; Jin W
    Int J Biol Macromol; 2018 Oct; 118(Pt B):2032-2039. PubMed ID: 30021133
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The molecular structure of waxy maize starch nanocrystals.
    Angellier-Coussy H; Putaux JL; Molina-Boisseau S; Dufresne A; Bertoft E; Perez S
    Carbohydr Res; 2009 Aug; 344(12):1558-66. PubMed ID: 19414173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.
    Yang Z; Swedlund P; Gu Q; Hemar Y; Chaieb S
    PLoS One; 2016; 11(5):e0156061. PubMed ID: 27219066
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles.
    Sun Q; Gong M; Li Y; Xiong L
    Carbohydr Polym; 2014 Oct; 111():133-8. PubMed ID: 25037338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation of edible starch nanomaterials for the separation of polyphenols from fruit pomace extract and determination of their adsorption properties.
    Lei W; Liang J; Tan P; Yang S; Fan L; Han M; Li H; Gao Z
    Int J Biol Macromol; 2022 Dec; 222(Pt B):2054-2064. PubMed ID: 36209904
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interactions of Surface-Functionalized Starch Nanoparticles with Pepsin and Trypsin in Simulated Gastrointestinal Fluids.
    Wang Y; Sun Y; Yang J; Dai L; Ji N; Xiong L; Sun Q
    J Agric Food Chem; 2020 Sep; 68(37):10174-10183. PubMed ID: 32816465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isocyanate crosslinked reactive starch nanoparticles for thermo-responsive conducting applications.
    Valodkar M; Thakore S
    Carbohydr Res; 2010 Nov; 345(16):2354-60. PubMed ID: 20851382
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparative study of annealing of waxy, normal and high-amylose maize starches: the role of amylose molecules.
    Wang S; Wang J; Yu J; Wang S
    Food Chem; 2014 Dec; 164():332-8. PubMed ID: 24996342
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions between debranched starch and emulsifiers, polyphenols, and fatty acids.
    Chang R; Xiong L; Li M; Wang Y; Lin M; Qiu L; Bian X; Sun C; Sun Q
    Int J Biol Macromol; 2020 May; 150():644-653. PubMed ID: 32061844
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch.
    Chai Y; Wang M; Zhang G
    J Agric Food Chem; 2013 Sep; 61(36):8608-15. PubMed ID: 23964645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-strength waterborne polyurethane reinforced with waxy maize starch nanocrystals.
    Wang Y; Zhang L
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5831-8. PubMed ID: 19198313
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quinoa starch nanocrystals production by acid hydrolysis: Kinetics and properties.
    Velásquez-Castillo LE; Leite MA; Ditchfield C; Sobral PJDA; Moraes ICF
    Int J Biol Macromol; 2020 Jan; 143():93-101. PubMed ID: 31809777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro inhibition of pancreatic α-amylase by spherical and polygonal starch nanoparticles.
    Jiang S; Li M; Chang R; Xiong L; Sun Q
    Food Funct; 2018 Jan; 9(1):355-363. PubMed ID: 29206258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining ozone and ultrasound technologies to modify maize starch.
    Castanha N; Lima DC; Matta Junior MD; Campanella OH; Augusto PED
    Int J Biol Macromol; 2019 Oct; 139():63-74. PubMed ID: 31369781
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular Rearrangement of Glucans from Natural Starch To Form Size-Controlled Functional Magnetic Polymer Beads.
    Luo K; Jeong KB; You SM; Lee DH; Kim YR
    J Agric Food Chem; 2018 Jul; 66(26):6806-6813. PubMed ID: 29902000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultra-small and innocuous cationic starch nanospheres: preparation, characterization and drug delivery study.
    Huang Y; Liu M; Gao C; Yang J; Zhang X; Zhang X; Liu Z
    Int J Biol Macromol; 2013 Jul; 58():231-9. PubMed ID: 23587995
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid.
    Zhou J; Tong J; Su X; Ren L
    Int J Biol Macromol; 2016 Oct; 91():1186-93. PubMed ID: 27365120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.