These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31870999)

  • 1. A Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids.
    Quan H; Khosravi A; Yang D; Srinivasan D
    IEEE Trans Neural Netw Learn Syst; 2020 Nov; 31(11):4582-4599. PubMed ID: 31870999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.
    Quan H; Srinivasan D; Khosravi A
    IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2123-35. PubMed ID: 25532191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term load and wind power forecasting using neural network-based prediction intervals.
    Quan H; Srinivasan D; Khosravi A
    IEEE Trans Neural Netw Learn Syst; 2014 Feb; 25(2):303-15. PubMed ID: 24807030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demand for flexibility improvement of thermal power units and accommodation of wind power under the situation of high-proportion renewable integration-taking North Hebei as an example.
    Luo G; Zhang X; Liu S; Dan E; Guo Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):7033-7047. PubMed ID: 30644051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive grid based multi-objective Cauchy differential evolution for stochastic dynamic economic emission dispatch with wind power uncertainty.
    Zhang H; Lei X; Wang C; Yue D; Xie X
    PLoS One; 2017; 12(9):e0185454. PubMed ID: 28961262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar and wind power data from the Chinese State Grid Renewable Energy Generation Forecasting Competition.
    Chen Y; Xu J
    Sci Data; 2022 Sep; 9(1):577. PubMed ID: 36130945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.
    Men Z; Yee E; Lien FS; Yang Z; Liu Y
    Int Sch Res Notices; 2014; 2014():972580. PubMed ID: 27382627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renewable energy sources integration via machine learning modelling: A systematic literature review.
    Alazemi T; Darwish M; Radi M
    Heliyon; 2024 Feb; 10(4):e26088. PubMed ID: 38404865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated method with adaptive decomposition and machine learning for renewable energy power generation forecasting.
    Li G; Yu L; Zhang Y; Sun P; Li R; Zhang Y; Li G; Wang P
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41937-41953. PubMed ID: 36640232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic and extrinsic techniques for quantification uncertainty of an interpretable GRU deep learning model used to predict atmospheric total suspended particulates (TSP) in Zabol, Iran during the dusty period of 120-days wind.
    Gholami H; Mohammadifar A; Behrooz RD; Kaskaoutis DG; Li Y; Song Y
    Environ Pollut; 2024 Feb; 342():123082. PubMed ID: 38061429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combination predicting methodology based on T-LSTNet_Markov for short-term wind power prediction.
    Wang Y; Wu Y; Xu H; Chen Z; Gao J; Xu Z; Li L
    Network; 2023; 34(3):151-173. PubMed ID: 37246622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control and Optimisation of Power Grids Using Smart Meter Data: A Review.
    Chen Z; Amani AM; Yu X; Jalili M
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical assessment of small-scale wind power for residential use in Mexico: A Bayesian intelligence approach.
    Borunda M; de la Cruz J; Garduno-Ramirez R; Nicholson A
    PLoS One; 2020; 15(3):e0230122. PubMed ID: 32163479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction.
    Ak R; Fink O; Zio E
    IEEE Trans Neural Netw Learn Syst; 2016 Aug; 27(8):1734-47. PubMed ID: 25910257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal estimation of wind speed and wind power using extreme learning machines: predictions, uncertainty and technical potential.
    Amato F; Guignard F; Walch A; Mohajeri N; Scartezzini JL; Kanevski M
    Stoch Environ Res Risk Assess; 2022; 36(8):2049-2069. PubMed ID: 36101650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Automated Model Selection for Wind Speed and Solar Irradiance Forecasting.
    Blazakis K; Schetakis N; Bonfini P; Stavrakakis K; Karapidakis E; Katsigiannis Y
    Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainty-Aware Management of Smart Grids Using Cloud-Based LSTM-Prediction Interval.
    Tajalli SZ; Kavousi-Fard A; Mardaneh M; Khosravi A; Razavi-Far R
    IEEE Trans Cybern; 2022 Oct; 52(10):9964-9977. PubMed ID: 34343101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An artificial gorilla troops optimizer for stochastic unit commitment problem solution incorporating solar, wind, and load uncertainties.
    Rihan M; Sayed A; Abdel-Rahman AB; Ebeed M; Alghamdi TAH; Salama HS
    PLoS One; 2024; 19(7):e0305329. PubMed ID: 38985844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on proliferation of artificial intelligence in wind energy forecasting and instrumentation management.
    Zhao L; Nazir MS; Nazir HMJ; Abdalla AN
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):43690-43709. PubMed ID: 35435552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A green energy research: forecasting of wind power for a cleaner environment using robust hybrid metaheuristic model.
    Kerem A; Saygin A; Rahmani R
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):50998-51010. PubMed ID: 34537944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.