These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 31870999)
21. Distributed robust optimization for low-carbon dispatch of wind-thermal power under uncertainties. Jin J; Wen Q; Qiu Y; Cheng S; Guo X Environ Sci Pollut Res Int; 2023 Feb; 30(8):20980-20994. PubMed ID: 36264472 [TBL] [Abstract][Full Text] [Related]
22. A Low-Carbon and Economic Dispatch Strategy for a Multi-Microgrid Based on a Meteorological Classification to Handle the Uncertainty of Wind Power. Liu Y; Li X; Liu Y Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300077 [TBL] [Abstract][Full Text] [Related]
23. Planning low-carbon electricity systems under uncertainty considering operational flexibility and smart grid technologies. Moreno R; Street A; Arroyo JM; Mancarella P Philos Trans A Math Phys Eng Sci; 2017 Aug; 375(2100):. PubMed ID: 29052551 [TBL] [Abstract][Full Text] [Related]
24. A Multi-Stage Planning Method for Distribution Networks Based on ARIMA with Error Gradient Sampling for Source-Load Prediction. Yan S; Hu M Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366098 [TBL] [Abstract][Full Text] [Related]
25. Deep Learning Method Based on Gated Recurrent Unit and Variational Mode Decomposition for Short-Term Wind Power Interval Prediction. Wang R; Li C; Fu W; Tang G IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):3814-3827. PubMed ID: 31725392 [TBL] [Abstract][Full Text] [Related]
26. Robust Optimization Research of Cyber-Physical Power System Considering Wind Power Uncertainty and Coupled Relationship. Dong J; Song Z; Zheng Y; Luo J; Zhang M; Yang X; Ma H Entropy (Basel); 2024 Sep; 26(9):. PubMed ID: 39330128 [TBL] [Abstract][Full Text] [Related]
27. Improved gray wolf optimization algorithm for solving placement and sizing of electrical energy storage system in micro-grids. Miao D; Hossain S ISA Trans; 2020 Jul; 102():376-387. PubMed ID: 32081401 [TBL] [Abstract][Full Text] [Related]
28. Probabilistic Load Forecasting for Building Energy Models. Lucas Segarra E; Ramos Ruiz G; Fernández Bandera C Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33203080 [TBL] [Abstract][Full Text] [Related]
29. Multi-task learning for the prediction of wind power ramp events with deep neural networks. Dorado-Moreno M; Navarin N; Gutiérrez PA; Prieto L; Sperduti A; Salcedo-Sanz S; Hervás-Martínez C Neural Netw; 2020 Mar; 123():401-411. PubMed ID: 31926464 [TBL] [Abstract][Full Text] [Related]
31. Event triggered state estimation techniques for power systems with integrated variable energy resources. Francy RC; Farid AM; Youcef-Toumi K ISA Trans; 2015 May; 56():165-72. PubMed ID: 25467543 [TBL] [Abstract][Full Text] [Related]
32. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos. New L; Bjerre E; Millsap B; Otto MC; Runge MC PLoS One; 2015; 10(7):e0130978. PubMed ID: 26134412 [TBL] [Abstract][Full Text] [Related]
33. Hierarchical deep reinforcement learning for self-adaptive economic dispatch. Li M; Yang D; Xu Y; Ji T Heliyon; 2024 Jul; 10(14):e33944. PubMed ID: 39114005 [TBL] [Abstract][Full Text] [Related]
34. A hybrid prediction model for forecasting wind energy resources. Zhang Y; Pan G Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801 [TBL] [Abstract][Full Text] [Related]
35. Priori-guided and data-driven hybrid model for wind power forecasting. Huang Y; Liu GP; Hu W ISA Trans; 2023 Mar; 134():380-395. PubMed ID: 35989129 [TBL] [Abstract][Full Text] [Related]
36. An Improved Deep Reinforcement Learning Method for Dispatch Optimization Strategy of Modern Power Systems. Zhai S; Li W; Qiu Z; Zhang X; Hou S Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981434 [TBL] [Abstract][Full Text] [Related]
37. A comprehensive review of wind power integration and energy storage technologies for modern grid frequency regulation. Ullah F; Zhang X; Khan M; Mastoi MS; Munir HM; Flah A; Said Y Heliyon; 2024 May; 10(9):e30466. PubMed ID: 38756608 [TBL] [Abstract][Full Text] [Related]
38. Inherent spatiotemporal uncertainty of renewable power in China. Wang J; Chen L; Tan Z; Du E; Liu N; Ma J; Sun M; Li C; Song J; Lu X; Tan CW; He G Nat Commun; 2023 Sep; 14(1):5379. PubMed ID: 37666800 [TBL] [Abstract][Full Text] [Related]
39. An Insight of Deep Learning Based Demand Forecasting in Smart Grids. Aguiar-Pérez JM; Pérez-Juárez MÁ Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772509 [TBL] [Abstract][Full Text] [Related]