BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31871051)

  • 21. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate.
    Choi KH; Shi J; Hopkins CE; Tolan DR; Allen KN
    Biochemistry; 2001 Nov; 40(46):13868-75. PubMed ID: 11705376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data.
    Tittmann K
    Bioorg Chem; 2014 Dec; 57():263-280. PubMed ID: 25267444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of transaldolase B from Escherichia coli suggests a circular permutation of the alpha/beta barrel within the class I aldolase family.
    Jia J; Huang W; Schörken U; Sahm H; Sprenger GA; Lindqvist Y; Schneider G
    Structure; 1996 Jun; 4(6):715-24. PubMed ID: 8805555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The metabolic significance of octulose phosphates in the photosynthetic carbon reduction cycle in spinach.
    Williams JF; MacLeod JK
    Photosynth Res; 2006 Nov; 90(2):125-48. PubMed ID: 17160443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.
    Sautner V; Friedrich MM; Lehwess-Litzmann A; Tittmann K
    Biochemistry; 2015 Jul; 54(29):4475-86. PubMed ID: 26131847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico exploration of the fructose-6-phosphate phosphorylation step in glycolysis: genomic evidence of the coexistence of an atypical ATP-dependent along with a PPi-dependent phosphofructokinase in Propionibacterium freudenreichii subsp. shermanii.
    Meurice G; Deborde C; Jacob D; Falentin H; Boyaval P; Dimova D
    In Silico Biol; 2004; 4(4):517-28. PubMed ID: 15507000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of sugar phosphate intermediates of the pentose phosphate pathway by LC-MS/MS: application to two new inherited defects of metabolism.
    Wamelink MM; Struys EA; Huck JH; Roos B; van der Knaap MS; Jakobs C; Verhoeven NM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Aug; 823(1):18-25. PubMed ID: 16055050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 13C and 31P NMR studies of the pentose phosphate pathway in human erythrocytes.
    Kuchel PW; Berthon HA; Bubb WA; McIntyre LM; Nygh NK; Thorburn DR
    Biomed Biochim Acta; 1990; 49(2-3):S105-10. PubMed ID: 2167075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases.
    Schurmann M; Sprenger GA
    J Biol Chem; 2001 Apr; 276(14):11055-61. PubMed ID: 11120740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli.
    Gu Y; Li J; Zhang L; Chen J; Niu L; Yang Y; Yang S; Jiang W
    J Biotechnol; 2009 Sep; 143(4):284-7. PubMed ID: 19695296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inorganic pyrophosphate: fructose-6-phosphate 1-phosphotransferase of the potato tuber is related to the major ATP-dependent phosphofructokinase of E. coli.
    Yuan XH; Kwiatkowska D; Kemp RG
    Biochem Biophys Res Commun; 1988 Jul; 154(1):113-7. PubMed ID: 2840062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
    Mutuku JM; Nose A
    Plant Cell Physiol; 2012 Jun; 53(6):1017-32. PubMed ID: 22492233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Untargeted metabolomics as an unbiased approach to the diagnosis of inborn errors of metabolism of the non-oxidative branch of the pentose phosphate pathway.
    Shayota BJ; Donti TR; Xiao J; Gijavanekar C; Kennedy AD; Hubert L; Rodan L; Vanderpluym C; Nowak C; Bjornsson HT; Ganetzky R; Berry GT; Pappan KL; Sutton VR; Sun Q; Elsea SH
    Mol Genet Metab; 2020; 131(1-2):147-154. PubMed ID: 32828637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.
    Linck A; Vu XK; Essl C; Hiesl C; Boles E; Oreb M
    FEMS Yeast Res; 2014 May; 14(3):389-98. PubMed ID: 24456572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway.
    Follstad BD; Stephanopoulos G
    Eur J Biochem; 1998 Mar; 252(3):360-71. PubMed ID: 9546650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Presence of nonoxidative enzymes of the pentose phosphate shunt in Tetrahymena.
    Eldan M; Blum JJ
    J Protozool; 1975 Feb; 22(1):145-9. PubMed ID: 163903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The significance of sedoheptulose 1,7-bisphosphate in the metabolism and regulation of the pentose pathway in liver.
    Williams JF; Blackmore PF; Arora KK
    Biochem Int; 1985 Oct; 11(4):599-610. PubMed ID: 4084320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing.
    Qian Y; Banerjee S; Grossman CE; Amidon W; Nagy G; Barcza M; Niland B; Karp DR; Middleton FA; Banki K; Perl A
    Biochem J; 2008 Oct; 415(1):123-34. PubMed ID: 18498245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose.
    Park SH; Lee K; Jang JW; Hahn JS
    ACS Synth Biol; 2019 Feb; 8(2):346-357. PubMed ID: 30586497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.