These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31871486)

  • 21. The influence of tibial component malalignment on bone strain in revision total knee replacement.
    Rastetter BR; Wright SJ; Gheduzzi S; Miles AW; Clift SE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):561-8. PubMed ID: 27006420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Platform switching: biomechanical evaluation using three-dimensional finite element analysis.
    Tabata LF; Rocha EP; Barão VA; Assunção WG
    Int J Oral Maxillofac Implants; 2011; 26(3):482-91. PubMed ID: 21691594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of medial meniscectomy on strain distribution in the proximal part of the tibia.
    Bourne RB; Finlay JB; Papadopoulos P; Andreae P
    J Bone Joint Surg Am; 1984 Dec; 66(9):1431-7. PubMed ID: 6548753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A three-dimensional finite element analysis of the upper tibia.
    Little RB; Wevers HW; Siu D; Cooke TD
    J Biomech Eng; 1986 May; 108(2):111-9. PubMed ID: 3724097
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Albiol L; Cilla M; Pflanz D; Kramer I; Kneissel M; Duda GN; Willie BM; Checa S
    J R Soc Interface; 2018 Apr; 15(141):. PubMed ID: 29669893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Strain Measurements of a Tubular Elastic Model Using Tomographic Particle Image Velocimetry.
    Takahashi A; Zhu X; Aoyama Y; Umezu M; Iwasaki K
    Cardiovasc Eng Technol; 2018 Sep; 9(3):395-404. PubMed ID: 29560585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Failure stress criteria for composite resin.
    De Groot R; Peters MC; De Haan YM; Dop GJ; Plasschaert AJ
    J Dent Res; 1987 Dec; 66(12):1748-52. PubMed ID: 3479474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro strain distribution in the proximal tibia. Effect of varus-valgus loading in the normal and osteoarthritic knee.
    Bourne RB; Finlay JB; Papadopoulos P; Rorabeck CH; Andreae P
    Clin Orthop Relat Res; 1984 Sep; (188):285-92. PubMed ID: 6467722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical effects of offset placement of dental implants in the edentulous posterior mandible.
    Shimura Y; Sato Y; Kitagawa N; Omori M
    Int J Implant Dent; 2016 Dec; 2(1):17. PubMed ID: 27747709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum.
    Portnoy S; Siev-Ner I; Yizhar Z; Kristal A; Shabshin N; Gefen A
    Ann Biomed Eng; 2009 Dec; 37(12):2583-605. PubMed ID: 19768545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.
    Giffin JR; Stabile KJ; Zantop T; Vogrin TM; Woo SL; Harner CD
    Am J Sports Med; 2007 Sep; 35(9):1443-9. PubMed ID: 17641101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical comparison of two alternative tibial plateau leveling osteotomy plates with the original standard in an axially loaded gap model: an in vitro study.
    Kloc PA; Kowaleski MP; Litsky AS; Brown NO; Johnson KA
    Vet Surg; 2009 Jan; 38(1):40-8. PubMed ID: 19152616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How do metacarpophalangeal joint extension, collateromotion and axial rotation influence dorsal surface strains of the equine proximal phalanx at different loads in vitro?
    Singer E; Garcia T; Stover S
    J Biomech; 2013 Feb; 46(4):738-44. PubMed ID: 23246042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incremental filling technique and composite material--part II: shrinkage and shrinkage stresses.
    Bicalho AA; Valdívia AD; Barreto BC; Tantbirojn D; Versluis A; Soares CJ
    Oper Dent; 2014; 39(2):E83-92. PubMed ID: 24125075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finite element analysis of intramedullary nailing and double locking plate for treating extra-articular proximal tibial fractures.
    Chen F; Huang X; Ya Y; Ma F; Qian Z; Shi J; Guo S; Yu B
    J Orthop Surg Res; 2018 Jan; 13(1):12. PubMed ID: 29338748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical analysis of penile erections: penile buckling behaviour under axial loading and radial compression.
    Timm GW; Elayaperumal S; Hegrenes J
    BJU Int; 2008 Jul; 102(1):76-84. PubMed ID: 18336615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel Design of a Plate for Posterolateral Tibial Plateau Fractures Through Traditional Anterolateral Approach.
    Ren D; Liu Y; Lu J; Xu R; Wang P
    Sci Rep; 2018 Nov; 8(1):16418. PubMed ID: 30401952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.