These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31871669)

  • 1. Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China.
    Xiao J; Eziz A; Zhang H; Wang Z; Tang Z; Fang J
    Ecol Evol; 2019 Dec; 9(23):13596-13607. PubMed ID: 31871669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the Potential Distribution of
    Xiao F; Liu Q; Qin Y
    Biology (Basel); 2023 Dec; 13(1):. PubMed ID: 38275724
    [No Abstract]   [Full Text] [Related]  

  • 3. Nature-based framework for sustainable afforestation in global drylands under changing climate.
    Liu H; Xu C; Allen CD; Hartmann H; Wei X; Yakir D; Wu X; Yu P
    Glob Chang Biol; 2022 Apr; 28(7):2202-2220. PubMed ID: 34953175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change.
    Wani IA; Khan S; Verma S; Al-Misned FA; Shafik HM; El-Serehy HA
    Sci Rep; 2022 Aug; 12(1):13205. PubMed ID: 35915126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the distribution of
    Elias WC; Sintayehu DW; Arbo BF; Hadera AK
    Heliyon; 2022 Aug; 8(8):e10393. PubMed ID: 36090205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating rainfall interception loss of three dominant shrub species in an oasis-desert ecotone using in situ measurements and the revised Gash analytical model.
    Zhao W; Ji X; Jin B; Du Z; Zhang J; Jiao D; Yang Q; Zhao L
    J Environ Manage; 2023 Dec; 347():119091. PubMed ID: 37793288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the suitable habitats of parasitic desert species based on a niche model with
    He P; Li Y; Xu N; Peng C; Meng F
    Ecol Evol; 2021 Dec; 11(24):17817-17834. PubMed ID: 35003642
    [No Abstract]   [Full Text] [Related]  

  • 8. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.
    McCluney KE; Belnap J; Collins SL; González AL; Hagen EM; Nathaniel Holland J; Kotler BP; Maestre FT; Smith SD; Wolf BO
    Biol Rev Camb Philos Soc; 2012 Aug; 87(3):563-82. PubMed ID: 22098619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the influence of future climate change on the suitable distribution areas of Elaeagnus angustifolia.
    Zhang XQ; Li GQ; DU S
    Ying Yong Sheng Tai Xue Bao; 2018 Oct; 29(10):3213-3220. PubMed ID: 30325145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental partitioning of rainfall into throughfall, stemflow and interception loss by Haloxylon ammodendron, a dominant sand-stabilizing shrub in northwestern China.
    Zhao W; Ji X; Jin B; Du Z; Zhang J; Jiao D; Zhao L
    Sci Total Environ; 2023 Feb; 858(Pt 2):159928. PubMed ID: 36343808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of seed germination and seedling emergence of
    Zhu Y; Jia Z; Wang G; Ning H; Ji X; Luo Q
    AoB Plants; 2023 Feb; 15(2):plac048. PubMed ID: 37025101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relict Plants Are Better Able to Adapt to Climate Change: Evidence from Desert Shrub Communities.
    Lu Y; Zhang B; Zhang M; Jie M; Guo S; Wang Y
    Plants (Basel); 2023 Dec; 12(23):. PubMed ID: 38068700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios.
    Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the potential distribution of four endangered holoparasites and their primary hosts in China under climate change.
    Lu X; Jiang R; Zhang G
    Front Plant Sci; 2022; 13():942448. PubMed ID: 35991412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis suggests extensive gene flow within and between catchments in a common and ecologically significant dryland river shrub species;
    Murray B; Reid M; Capon S; Wu SB
    Ecol Evol; 2019 Jul; 9(13):7613-7627. PubMed ID: 31346426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Productivity responses of desert vegetation to precipitation patterns across a rainfall gradient.
    Li F; Zhao W; Liu H
    J Plant Res; 2015 Mar; 128(2):283-94. PubMed ID: 25613044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of climate change on the geographical distribution and niche dynamics of
    Hu J; Feng Y; Zhong H; Liu W; Tian X; Wang Y; Tan T; Hu Z; Liu Y
    PeerJ; 2023; 11():e15741. PubMed ID: 37520262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decline in the suitable habitat of dominant Abies species in response to climate change in the Hindu Kush Himalayan region: insights from species distribution modelling.
    Malik RA; Reshi ZA; Rafiq I; Singh SP
    Environ Monit Assess; 2022 Jul; 194(9):596. PubMed ID: 35861887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential distribution of three types of ephemeral plants under climate changes.
    Lan Z; Huiliang L; Hongxiang Z; Yanfeng C; Lingwei Z; Kudusi K; Taxmamat D; Yuanming Z
    Front Plant Sci; 2022; 13():1035684. PubMed ID: 36507407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the effect of climate change on the distribution of threatened medicinal orchid Satyrium nepalense D. Don in India.
    Kumar D; Rawat S
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72431-72444. PubMed ID: 35524848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.