These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 31871843)
1. Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks. Bándi P; Balkenhol M; van Ginneken B; van der Laak J; Litjens G PeerJ; 2019; 7():e8242. PubMed ID: 31871843 [TBL] [Abstract][Full Text] [Related]
2. HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images. van Rijthoven M; Balkenhol M; Siliņa K; van der Laak J; Ciompi F Med Image Anal; 2021 Feb; 68():101890. PubMed ID: 33260110 [TBL] [Abstract][Full Text] [Related]
4. Single image super-resolution for whole slide image using convolutional neural networks and self-supervised color normalization. Li B; Keikhosravi A; Loeffler AG; Eliceiri KW Med Image Anal; 2021 Feb; 68():101938. PubMed ID: 33359932 [TBL] [Abstract][Full Text] [Related]
5. CNN cascades for segmenting sparse objects in gigapixel whole slide images. Gadermayr M; Dombrowski AK; Klinkhammer BM; Boor P; Merhof D Comput Med Imaging Graph; 2019 Jan; 71():40-48. PubMed ID: 30472409 [TBL] [Abstract][Full Text] [Related]
6. Recognizing basal cell carcinoma on smartphone-captured digital histopathology images with a deep neural network. Jiang YQ; Xiong JH; Li HY; Yang XH; Yu WT; Gao M; Zhao X; Ma YP; Zhang W; Guan YF; Gu H; Sun JF Br J Dermatol; 2020 Mar; 182(3):754-762. PubMed ID: 31017653 [TBL] [Abstract][Full Text] [Related]
7. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Sharma H; Zerbe N; Klempert I; Hellwich O; Hufnagl P Comput Med Imaging Graph; 2017 Nov; 61():2-13. PubMed ID: 28676295 [TBL] [Abstract][Full Text] [Related]
8. High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection. Cruz-Roa A; Gilmore H; Basavanhally A; Feldman M; Ganesan S; Shih N; Tomaszewski J; Madabhushi A; González F PLoS One; 2018; 13(5):e0196828. PubMed ID: 29795581 [TBL] [Abstract][Full Text] [Related]
9. A computer-aided diagnosis system for differentiation and delineation of malignant regions on whole-slide prostate histopathology image using spatial statistics and multidimensional DenseNet. Chen CM; Huang YS; Fang PW; Liang CW; Chang RF Med Phys; 2020 Mar; 47(3):1021-1033. PubMed ID: 31834623 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning-Based Histopathologic Assessment of Kidney Tissue. Hermsen M; de Bel T; den Boer M; Steenbergen EJ; Kers J; Florquin S; Roelofs JJTH; Stegall MD; Alexander MP; Smith BH; Smeets B; Hilbrands LB; van der Laak JAWM J Am Soc Nephrol; 2019 Oct; 30(10):1968-1979. PubMed ID: 31488607 [TBL] [Abstract][Full Text] [Related]
11. Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network. Khameneh FD; Razavi S; Kamasak M Comput Biol Med; 2019 Jul; 110():164-174. PubMed ID: 31163391 [TBL] [Abstract][Full Text] [Related]
12. H2G-Net: A multi-resolution refinement approach for segmentation of breast cancer region in gigapixel histopathological images. Pedersen A; Smistad E; Rise TV; Dale VG; Pettersen HS; Nordmo TS; Bouget D; Reinertsen I; Valla M Front Med (Lausanne); 2022; 9():971873. PubMed ID: 36186805 [TBL] [Abstract][Full Text] [Related]
13. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489 [TBL] [Abstract][Full Text] [Related]
14. Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network. Jacobsen N; Deistung A; Timmann D; Goericke SL; Reichenbach JR; Güllmar D Z Med Phys; 2019 May; 29(2):128-138. PubMed ID: 30579766 [TBL] [Abstract][Full Text] [Related]
15. A dense multi-path decoder for tissue segmentation in histopathology images. Vu QD; Kwak JT Comput Methods Programs Biomed; 2019 May; 173():119-129. PubMed ID: 31046986 [TBL] [Abstract][Full Text] [Related]
16. A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images. Cui Y; Zhang G; Liu Z; Xiong Z; Hu J Med Biol Eng Comput; 2019 Sep; 57(9):2027-2043. PubMed ID: 31346949 [TBL] [Abstract][Full Text] [Related]
17. Spatial Immunophenotyping from Whole-Slide Multiplexed Tissue Imaging Using Convolutional Neural Networks. Yosofvand M; Edmiston SN; Smithy JW; Peng X; Kostrzewa CE; Lin B; Ehrich F; Reiner A; Miedema J; Moy AP; Orlow I; Postow MA; Panageas K; Seshan VE; Callahan MK; Thomas NE; Shen R bioRxiv; 2024 Aug; ():. PubMed ID: 39229153 [TBL] [Abstract][Full Text] [Related]
18. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Huang L; Xia W; Zhang B; Qiu B; Gao X Comput Methods Programs Biomed; 2017 May; 143():67-74. PubMed ID: 28391820 [TBL] [Abstract][Full Text] [Related]
19. An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation. Hoseini F; Shahbahrami A; Bayat P J Digit Imaging; 2018 Oct; 31(5):738-747. PubMed ID: 29488179 [TBL] [Abstract][Full Text] [Related]
20. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]