These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 31872161)

  • 1. Biomaterials for stem cell engineering and biomanufacturing.
    Xu Y; Chen C; Hellwarth PB; Bao X
    Bioact Mater; 2019 Dec; 4():366-379. PubMed ID: 31872161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Advancement of Biomaterials in Regulating Stem Cell Fate.
    Hiew VV; Simat SFB; Teoh PL
    Stem Cell Rev Rep; 2018 Feb; 14(1):43-57. PubMed ID: 28884292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterials for pluripotent stem cell engineering: From fate determination to vascularization.
    Seale NM; Varghese S
    J Mater Chem B; 2016 May; 4(20):3454-3463. PubMed ID: 27446588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.
    Ardeshirylajimi A
    J Cell Biochem; 2017 Oct; 118(10):3034-3042. PubMed ID: 28316107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in Bioengineering Strategies for Heart Regenerative Medicine.
    Häneke T; Sahara M
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polylactides in additive biomanufacturing.
    Poh PSP; Chhaya MP; Wunner FM; De-Juan-Pardo EM; Schilling AF; Schantz JT; van Griensven M; Hutmacher DW
    Adv Drug Deliv Rev; 2016 Dec; 107():228-246. PubMed ID: 27492211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of biomaterials in stem cell differentiation: applications in the musculoskeletal system.
    Elisseeff J; Ferran A; Hwang S; Varghese S; Zhang Z
    Stem Cells Dev; 2006 Jun; 15(3):295-303. PubMed ID: 16846368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterials and Advanced Biofabrication Techniques in hiPSCs Based Neuromyopathic Disease Modeling.
    Sun J; Ma X; Chu HT; Feng B; Tuan RS; Jiang Y
    Front Bioeng Biotechnol; 2019; 7():373. PubMed ID: 31850331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant-Derived Biomaterials and Their Potential in Cardiac Tissue Repair.
    Dai Y; Qiao K; Li D; Isingizwe P; Liu H; Liu Y; Lim K; Woodfield T; Liu G; Hu J; Yuan J; Tang J; Cui X
    Adv Healthc Mater; 2023 Aug; 12(20):e2202827. PubMed ID: 36977522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining the Characteristics and Applications of Mesenchymal, Induced Pluripotent, and Embryonic Stem Cells for Tissue Engineering Approaches across the Germ Layers.
    Priester C; MacDonald A; Dhar M; Bow A
    Pharmaceuticals (Basel); 2020 Oct; 13(11):. PubMed ID: 33114710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D biofabrication strategies for tissue engineering and regenerative medicine.
    Bajaj P; Schweller RM; Khademhosseini A; West JL; Bashir R
    Annu Rev Biomed Eng; 2014 Jul; 16():247-76. PubMed ID: 24905875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem cell-based tissue engineering approaches for musculoskeletal regeneration.
    Brown PT; Handorf AM; Jeon WB; Li WJ
    Curr Pharm Des; 2013; 19(19):3429-45. PubMed ID: 23432679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterial aided differentiation and maturation of induced pluripotent stem cells.
    Velmurugan BK; Bharathi Priya L; Poornima P; Lee LJ; Baskaran R
    J Cell Physiol; 2019 Jun; 234(6):8443-8454. PubMed ID: 30565686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of hematopoietic stem cells for regenerative medicine.
    Nakajima-Takagi Y; Osawa M; Iwama A
    Anat Rec (Hoboken); 2014 Jan; 297(1):111-20. PubMed ID: 24293004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical applications of pluripotent stem cells and their derivatives: current status and future perspectives.
    Pendse S; Vaidya A; Kale V
    Regen Med; 2022 Sep; 17(9):677-690. PubMed ID: 35703035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomanufacturing in low Earth orbit for regenerative medicine.
    Sharma A; Clemens RA; Garcia O; Taylor DL; Wagner NL; Shepard KA; Gupta A; Malany S; Grodzinsky AJ; Kearns-Jonker M; Mair DB; Kim DH; Roberts MS; Loring JF; Hu J; Warren LE; Eenmaa S; Bozada J; Paljug E; Roth M; Taylor DP; Rodrigue G; Cantini P; Smith AW; Giulianotti MA; Wagner WR
    Stem Cell Reports; 2022 Jan; 17(1):1-13. PubMed ID: 34971562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-Fabrication: Convergence of 3D Bioprinting and Nano-Biomaterials in Tissue Engineering and Regenerative Medicine.
    Di Marzio N; Eglin D; Serra T; Moroni L
    Front Bioeng Biotechnol; 2020; 8():326. PubMed ID: 32373603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Regenerative Medicine and Biomaterials.
    Şeker Ş; Elçin AE; Elçin YM
    Methods Mol Biol; 2023; 2575():127-152. PubMed ID: 36301474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Induced Pluripotent Stem Cells in Bone Repair and Regeneration.
    Rana D; Kumar S; Webster TJ; Ramalingam M
    Curr Osteoporos Rep; 2019 Aug; 17(4):226-234. PubMed ID: 31256323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.