These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31872357)

  • 1. Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain.
    Kemnitz J; Baumgartner CF; Eckstein F; Chaudhari A; Ruhdorfer A; Wirth W; Eder SK; Konukoglu E
    MAGMA; 2020 Aug; 33(4):483-493. PubMed ID: 31872357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of an active shape model-based semi-automated segmentation algorithm for the analysis of thigh muscle and adipose tissue cross-sectional areas.
    Kemnitz J; Eckstein F; Culvenor AG; Ruhdorfer A; Dannhauer T; Ring-Dimitriou S; Sänger AM; Wirth W
    MAGMA; 2017 Oct; 30(5):489-503. PubMed ID: 28455629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local MRI-based measures of thigh adipose tissue derived from fully automated deep convolutional neural network-based segmentation show a comparable responsiveness to bidirectional change in body weight as from quality controlled manual segmentation.
    Kemnitz J; Steidle-Kloc E; Wirth W; Fuerst D; Wisser A; Eder SK; Eckstein F
    Ann Anat; 2022 Feb; 240():151866. PubMed ID: 34823014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated patellofemoral MRI segmentation using holistically nested networks: Implications for evaluating patellofemoral osteoarthritis, pain, injury, pathology, and adolescent development.
    Cheng R; Alexandridi NA; Smith RM; Shen A; Gandler W; McCreedy E; McAuliffe MJ; Sheehan FT
    Magn Reson Med; 2020 Jan; 83(1):139-153. PubMed ID: 31402520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based automatic pipeline for quantitative assessment of thigh muscle morphology and fatty infiltration.
    Gaj S; Eck BL; Xie D; Lartey R; Lo C; Zaylor W; Yang M; Nakamura K; Winalski CS; Spindler KP; Li X
    Magn Reson Med; 2023 Jun; 89(6):2441-2455. PubMed ID: 36744695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Side differences of thigh muscle cross-sectional areas and maximal isometric muscle force in bilateral knees with the same radiographic disease stage, but unilateral frequent pain - data from the osteoarthritis initiative.
    Sattler M; Dannhauer T; Hudelmaier M; Wirth W; Sänger AM; Kwoh CK; Hunter DJ; Eckstein F;
    Osteoarthritis Cartilage; 2012 Jun; 20(6):532-40. PubMed ID: 22395037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal (4 year) change of thigh muscle and adipose tissue distribution in chronically painful vs painless knees--data from the Osteoarthritis Initiative.
    Ruhdorfer A; Wirth W; Dannhauer T; Eckstein F
    Osteoarthritis Cartilage; 2015 Aug; 23(8):1348-56. PubMed ID: 25887367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Thigh Muscle Changes in Knee Osteoarthritis Outcomes: Osteoarthritis Initiative Data.
    Mohajer B; Dolatshahi M; Moradi K; Najafzadeh N; Eng J; Zikria B; Wan M; Cao X; Roemer FW; Guermazi A; Demehri S
    Radiology; 2022 Oct; 305(1):169-178. PubMed ID: 35727152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative.
    Ambellan F; Tack A; Ehlke M; Zachow S
    Med Image Anal; 2019 Feb; 52():109-118. PubMed ID: 30529224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment.
    Hemke R; Buckless CG; Tsao A; Wang B; Torriani M
    Skeletal Radiol; 2020 Mar; 49(3):387-395. PubMed ID: 31396667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of synovial tissue volume in knee osteoarthritis using a semiautomated MRI-based quantitative approach.
    Perry TA; Gait A; O'Neill TW; Parkes MJ; Hodgson R; Callaghan MJ; Arden NK; Felson DT; Cootes TF
    Magn Reson Med; 2019 May; 81(5):3056-3064. PubMed ID: 30770575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images--data from the Osteoarthritis Initiative.
    Paproki A; Engstrom C; Chandra SS; Neubert A; Fripp J; Crozier S
    Osteoarthritis Cartilage; 2014 Sep; 22(9):1259-70. PubMed ID: 25014660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning.
    Byra M; Wu M; Zhang X; Jang H; Ma YJ; Chang EY; Shah S; Du J
    Magn Reson Med; 2020 Mar; 83(3):1109-1122. PubMed ID: 31535731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated measurement of fat infiltration in the hip abductors from Dixon magnetic resonance imaging.
    Belzunce MA; Henckel J; Fotiadou A; Di Laura A; Hart A
    Magn Reson Imaging; 2020 Oct; 72():61-70. PubMed ID: 32615150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRI.
    Langner T; Hedström A; Mörwald K; Weghuber D; Forslund A; Bergsten P; Ahlström H; Kullberg J
    Magn Reson Med; 2019 Apr; 81(4):2736-2745. PubMed ID: 30311704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying fat and lean muscle in the lower legs of women with knee osteoarthritis using two different MRI systems.
    Beattie K; Davison MJ; Noseworthy M; Adachi JD; Maly MR
    Rheumatol Int; 2016 Jun; 36(6):855-62. PubMed ID: 26979605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetes-associated thigh muscle degeneration mediates knee osteoarthritis-related outcomes: results from a longitudinal cohort study.
    Mohajer B; Moradi K; Guermazi A; Dolatshahi M; Zikria B; Najafzadeh N; Kalyani RR; Roemer FW; Berenbaum F; Demehri S
    Eur Radiol; 2023 Jan; 33(1):595-605. PubMed ID: 35951046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic muscle and fat segmentation in the thigh from T1-Weighted MRI.
    Orgiu S; Lafortuna CL; Rastelli F; Cadioli M; Falini A; Rizzo G
    J Magn Reson Imaging; 2016 Mar; 43(3):601-10. PubMed ID: 26268693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.