BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31872653)

  • 1. [Optimization of UDP-glucose supply module and production of ginsenoside F
    Wang JH; Wang D; Li WX; Huang Y; Dai ZB; Zhang XL
    Zhongguo Zhong Yao Za Zhi; 2019 Nov; 44(21):4596-4604. PubMed ID: 31872653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Construction of cell factories for high production of ginsenoside Rh_2 in Saccharomyces cerevisiae].
    Shi YS; Wang D; Li RS; Zhang XL; Dai ZB
    Zhongguo Zhong Yao Za Zhi; 2022 Feb; 47(3):651-658. PubMed ID: 35178947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.
    Wei W; Wang P; Wei Y; Liu Q; Yang C; Zhao G; Yue J; Yan X; Zhou Z
    Mol Plant; 2015 Sep; 8(9):1412-24. PubMed ID: 26032089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-level sustainable production of the characteristic protopanaxatriol-type saponins from Panax species in engineered Saccharomyces cerevisiae.
    Li X; Wang Y; Fan Z; Wang Y; Wang P; Yan X; Zhou Z
    Metab Eng; 2021 Jul; 66():87-97. PubMed ID: 33865981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius.
    Lu C; Zhao S; Wei G; Zhao H; Qu Q
    Plant Physiol Biochem; 2017 Feb; 111():67-76. PubMed ID: 27914321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of a bioactive unnatural ginsenoside by metabolically engineered yeasts based on a new UDP-glycosyltransferase from Bacillus subtilis.
    Liang H; Hu Z; Zhang T; Gong T; Chen J; Zhu P; Li Y; Yang J
    Metab Eng; 2017 Nov; 44():60-69. PubMed ID: 28778764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd.
    Jung SC; Kim W; Park SC; Jeong J; Park MK; Lim S; Lee Y; Im WT; Lee JH; Choi G; Kim SC
    Plant Cell Physiol; 2014 Dec; 55(12):2177-88. PubMed ID: 25320211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ginsenosides in
    Hou M; Wang R; Zhao S; Wang Z
    Acta Pharm Sin B; 2021 Jul; 11(7):1813-1834. PubMed ID: 34386322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng.
    Han JY; Hwang HS; Choi SW; Kim HJ; Choi YE
    Plant Cell Physiol; 2012 Sep; 53(9):1535-45. PubMed ID: 22875608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of a Novel Protopanaxatriol-Type Ginsenoside by Yeast Cell Factories.
    Zhou C; Gong T; Chen J; Chen T; Yang J; Zhu P
    Bioengineering (Basel); 2023 Apr; 10(4):. PubMed ID: 37106650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae.
    Zhao F; Bai P; Liu T; Li D; Zhang X; Lu W; Yuan Y
    Biotechnol Bioeng; 2016 Aug; 113(8):1787-95. PubMed ID: 26757342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng.
    Han JY; Kim HJ; Kwon YS; Choi YE
    Plant Cell Physiol; 2011 Dec; 52(12):2062-73. PubMed ID: 22039120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in
    Choi HS; Koo HB; Jeon SW; Han JY; Kim JS; Jun KM; Choi YE
    J Ginseng Res; 2022 Jul; 46(4):505-514. PubMed ID: 35818421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Producing aglycons of ginsenosides in bakers' yeast.
    Dai Z; Wang B; Liu Y; Shi M; Wang D; Zhang X; Liu T; Huang L; Zhang X
    Sci Rep; 2014 Jan; 4():3698. PubMed ID: 24424342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis in Panax quinquefolius.
    Wang L; Zhao SJ; Liang YL; Sun Y; Cao HJ; Han Y
    Funct Integr Genomics; 2014 Sep; 14(3):559-70. PubMed ID: 25056561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts.
    Wang P; Wei Y; Fan Y; Liu Q; Wei W; Yang C; Zhang L; Zhao G; Yue J; Yan X; Zhou Z
    Metab Eng; 2015 May; 29():97-105. PubMed ID: 25769286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides.
    Dai Z; Liu Y; Zhang X; Shi M; Wang B; Wang D; Huang L; Zhang X
    Metab Eng; 2013 Nov; 20():146-56. PubMed ID: 24126082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete Biotransformation of Protopanaxatriol-Type Ginsenosides in
    Yang EJ; Shin KC; Lee DY; Oh DK
    J Microbiol Biotechnol; 2018 Feb; 28(2):255-261. PubMed ID: 29169217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2).
    Park SB; Chun JH; Ban YW; Han JY; Choi YE
    J Ginseng Res; 2016 Jan; 40(1):47-54. PubMed ID: 26843821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng.
    Tansakul P; Shibuya M; Kushiro T; Ebizuka Y
    FEBS Lett; 2006 Oct; 580(22):5143-9. PubMed ID: 16962103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.