These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31872766)

  • 21. Determination of the extent of DNA bending by an adenine-thymine tract.
    Koo HS; Drak J; Rice JA; Crothers DM
    Biochemistry; 1990 May; 29(17):4227-34. PubMed ID: 2361140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stiffer double-stranded DNA in two-dimensional confinement due to bending anisotropy.
    Salari H; Eslami-Mossallam B; Ranjbar HF; Ejtehadi MR
    Phys Rev E; 2016 Dec; 94(6-1):062407. PubMed ID: 28085439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic force microscopy study of DNA flexibility on short length scales: smooth bending versus kinking.
    Mazur AK; Maaloum M
    Nucleic Acids Res; 2014 Dec; 42(22):14006-12. PubMed ID: 25414337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biotechnological mass production of DNA origami.
    Praetorius F; Kick B; Behler KL; Honemann MN; Weuster-Botz D; Dietz H
    Nature; 2017 Dec; 552(7683):84-87. PubMed ID: 29219963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The origin of different bending stiffness between double-stranded RNA and DNA revealed by magnetic tweezers and simulations.
    Dong HL; Zhang C; Dai L; Zhang Y; Zhang XH; Tan ZJ
    Nucleic Acids Res; 2024 Mar; 52(5):2519-2529. PubMed ID: 38321947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced bubble formation in looped short double-stranded DNA.
    Lee OC; Sung W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021902. PubMed ID: 22463239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA Nanotubes as a Versatile Tool to Study Semiflexible Polymers.
    Schnauß J; Glaser M; Lorenz JS; Schuldt C; Möser C; Sajfutdinow M; Händler T; Käs JA; Smith DM
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29155710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-Situ Configuration Studies on Segmented DNA Origami Nanotubes.
    Zhu B; Guo J; Zhang L; Pan M; Jing X; Wang L; Liu X; Zuo X
    Chembiochem; 2019 Jun; 20(12):1508-1513. PubMed ID: 30702811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties of DNA and DNA nanostructures: comparison of atomistic, Martini and oxDNA models.
    Naskar S; Maiti PK
    J Mater Chem B; 2021 Jun; 9(25):5102-5113. PubMed ID: 34127998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers.
    Shon MJ; Rah SH; Yoon TY
    Sci Adv; 2019 Jun; 5(6):eaav1697. PubMed ID: 31206015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale Structure and Elasticity of Pillared DNA Nanotubes.
    Joshi H; Kaushik A; Seeman NC; Maiti PK
    ACS Nano; 2016 Aug; 10(8):7780-91. PubMed ID: 27400249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-specific effect of thymine dimer formation on dAn.dTn tract bending and its biological implications.
    Wang CI; Taylor JS
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9072-6. PubMed ID: 1924370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A-Tract bending: insights into experimental structures by computational models.
    Strahs D; Schlick T
    J Mol Biol; 2000 Aug; 301(3):643-63. PubMed ID: 10966775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How to Measure Separations and Angles Between Intramolecular Fluorescent Markers.
    Mortensen KI; Sung J; Spudich JA; Flyvbjerg H
    Methods Enzymol; 2016; 581():147-185. PubMed ID: 27793279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Euler buckling and nonlinear kinking of double-stranded DNA.
    Fields AP; Meyer EA; Cohen AE
    Nucleic Acids Res; 2013 Nov; 41(21):9881-90. PubMed ID: 23956222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directing self-assembly of DNA nanotubes using programmable seeds.
    Mohammed AM; Schulman R
    Nano Lett; 2013 Sep; 13(9):4006-13. PubMed ID: 23919535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and characterization of programmable DNA nanotubes.
    Rothemund PW; Ekani-Nkodo A; Papadakis N; Kumar A; Fygenson DK; Winfree E
    J Am Chem Soc; 2004 Dec; 126(50):16344-52. PubMed ID: 15600335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topological measurement of an A-tract bend angle: variation of duplex winding.
    Tchernaenko V; Halvorson HR; Lutter LC
    J Mol Biol; 2003 Feb; 326(3):751-60. PubMed ID: 12581637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.