BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 31872835)

  • 1. Coupling of a conductive Ni
    Nazir A; Le HTT; Min CW; Kasbe A; Kim J; Jin CS; Park CJ
    Nanoscale; 2020 Jan; 12(3):1629-1642. PubMed ID: 31872835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly Conductive MOF of Graphene Analogue Ni
    Cai D; Lu M; Li L; Cao J; Chen D; Tu H; Li J; Han W
    Small; 2019 Oct; 15(44):e1902605. PubMed ID: 31518060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application.
    Zhang JL; Gao S; Yang Y; Liang WB; Lu ML; Zhang XY; Xiao HX; Li Y; Yuan R; Xiao DR
    Biosens Bioelectron; 2023 May; 227():115157. PubMed ID: 36841115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined Synthesis of Oriented Two-Dimensional Ni
    Liu XH; Yang YW; Liu XM; Hao Q; Wang LM; Sun B; Wu J; Wang D
    Langmuir; 2020 Jul; 36(26):7528-7532. PubMed ID: 32513012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive Ni
    Zhao W; Chen T; Wang W; Jin B; Peng J; Bi S; Jiang M; Liu S; Zhao Q; Huang W
    Sci Bull (Beijing); 2020 Nov; 65(21):1803-1811. PubMed ID: 36659120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution.
    Chen S; Dai J; Zeng XC
    Phys Chem Chem Phys; 2015 Feb; 17(8):5954-8. PubMed ID: 25636056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing.
    Campbell MG; Sheberla D; Liu SF; Swager TM; Dincă M
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4349-52. PubMed ID: 25678397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Electrodeposition of Electrically Conducting Ni
    Behboudikhiavi S; Chanteux G; Babu B; Faniel S; Marlec F; Robert K; Magnin D; Lucaccioni F; Omale JO; Apostol P; Piraux L; Lethien C; Vlad A
    Small; 2024 May; ():e2401509. PubMed ID: 38698603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of a Si/SiO
    Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M
    Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing platform for the highly sensitive detection of catechol based on composite coupling with conductive Ni
    Xu Y; Ben Y; Sun L; Su J; Guo H; Zhou R; Wei Y; Wei Y; Lu Y; Sun Y; Zhang X
    Phys Chem Chem Phys; 2024 Jan; 26(4):2951-2962. PubMed ID: 38214187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Synthesis of Si@SiC Composite as an Anode Material for Lithium-Ion Batteries.
    Ngo DT; Le HTT; Pham XM; Park CN; Park CJ
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32790-32800. PubMed ID: 28875692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Organic Frameworks-Derived Mesoporous Si/SiO
    Majeed MK; Ma G; Cao Y; Mao H; Ma X; Ma W
    Chemistry; 2019 Sep; 25(51):11991-11997. PubMed ID: 31290576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ synthesis of porous Si dispersed in carbon nanotube intertwined expanded graphite for high-energy lithium-ion batteries.
    Xu T; Wang D; Qiu P; Zhang J; Wang Q; Xia B; Xie X
    Nanoscale; 2018 Sep; 10(35):16638-16644. PubMed ID: 30155540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hollow Porous N and Co Dual-Doped Silicon@Carbon Nanocube Derived by ZnCo-Bimetallic Metal-Organic Framework toward Advanced Lithium-Ion Battery Anodes.
    Kim H; Baek J; Son DK; Ruby Raj M; Lee G
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45458-45475. PubMed ID: 36191137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A carob-inspired nanoscale design of yolk-shell Si@void@TiO
    Zhang C; Yang J; Mi H; Li Y; Zhang P; Zhang H
    Dalton Trans; 2019 May; 48(20):6846-6852. PubMed ID: 31020978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2.
    Miner EM; Fukushima T; Sheberla D; Sun L; Surendranath Y; Dincă M
    Nat Commun; 2016 Mar; 7():10942. PubMed ID: 26952523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Electrochemical Actuator under an Ultralow Driving Voltage with a Mixed Electronic-Ionic Conductive Metal-Organic Framework.
    Li Y; Yu P; Ma W; Mao L
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56158-56166. PubMed ID: 37976422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why conductivity is not always king - physical properties governing the capacitance of 2D metal-organic framework-based EDLC supercapacitor electrodes: a Ni
    Borysiewicz MA; Dou JH; Stassen I; Dincă M
    Faraday Discuss; 2021 Oct; 231(0):298-304. PubMed ID: 34259286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries.
    Shao F; Li H; Yao L; Xu S; Li G; Li B; Zou C; Yang Z; Su Y; Hu N; Zhang Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27270-27277. PubMed ID: 34081435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries.
    Wang Q; Zou R; Xia W; Ma J; Qiu B; Mahmood A; Zhao R; Yang Y; Xia D; Xu Q
    Small; 2015 Jun; 11(21):2511-7. PubMed ID: 25688868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.