These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 31872975)
21. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Guo X; Park H; Young S; Kretlow JD; van den Beucken JJ; Baggett LS; Tabata Y; Kasper FK; Mikos AG; Jansen JA Acta Biomater; 2010 Jan; 6(1):39-47. PubMed ID: 19660580 [TBL] [Abstract][Full Text] [Related]
22. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085 [TBL] [Abstract][Full Text] [Related]
23. Fabrication of an injectable BMSC-laden double network hydrogel based on silk fibroin/PEG for cartilage repair. Zhang Y; Cao Y; Zhang L; Zhao H; Ni T; Liu Y; An Z; Liu M; Pei R J Mater Chem B; 2020 Jul; 8(27):5845-5848. PubMed ID: 32667029 [TBL] [Abstract][Full Text] [Related]
24. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188 [TBL] [Abstract][Full Text] [Related]
25. Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering. Kim IG; Ko J; Lee HR; Do SH; Park K Biomaterials; 2016 Apr; 85():18-29. PubMed ID: 26854388 [TBL] [Abstract][Full Text] [Related]
26. A Cell-Free Silk Fibroin Biomaterial Strategy Promotes In Situ Cartilage Regeneration Via Programmed Releases of Bioactive Molecules. Mao Z; Bi X; Wu C; Zheng Y; Shu X; Wu S; Guan J; Ritchie RO Adv Healthc Mater; 2023 Jan; 12(1):e2201588. PubMed ID: 36314425 [TBL] [Abstract][Full Text] [Related]
28. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757 [TBL] [Abstract][Full Text] [Related]
29. Cartilage tissue engineering using decellularized biomatrix hydrogel containing TGF-β-loaded alginate microspheres in mechanically loaded bioreactor. Bordbar S; Li Z; Lotfibakhshaiesh N; Ai J; Tavassoli A; Beheshtizadeh N; Vainieri L; Khanmohammadi M; Sayahpour FA; Baghaban Eslaminejad M; Azami M; Grad S; Alini M Sci Rep; 2024 May; 14(1):11991. PubMed ID: 38796487 [TBL] [Abstract][Full Text] [Related]
30. Covalently conjugated transforming growth factor-β1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Choi B; Kim S; Fan J; Kowalski T; Petrigliano F; Evseenko D; Lee M Biomater Sci; 2015 May; 3(5):742-52. PubMed ID: 26222593 [TBL] [Abstract][Full Text] [Related]
31. Sustained Release SDF-1α/TGF-β1-Loaded Silk Fibroin-Porous Gelatin Scaffold Promotes Cartilage Repair. Chen Y; Wu T; Huang S; Suen CW; Cheng X; Li J; Hou H; She G; Zhang H; Wang H; Zheng X; Zha Z ACS Appl Mater Interfaces; 2019 Apr; 11(16):14608-14618. PubMed ID: 30938503 [TBL] [Abstract][Full Text] [Related]
32. Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells. Yang Q; Teng BH; Wang LN; Li K; Xu C; Ma XL; Zhang Y; Kong DL; Wang LY; Zhao YH Int J Nanomedicine; 2017; 12():6721-6733. PubMed ID: 28932116 [TBL] [Abstract][Full Text] [Related]
33. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Lee S; Choi J; Youn J; Lee Y; Kim W; Choe S; Song J; Reis RL; Khang G Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439850 [TBL] [Abstract][Full Text] [Related]
34. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
35. Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair. Zhou T; Li X; Li G; Tian T; Lin S; Shi S; Liao J; Cai X; Lin Y Sci Rep; 2017 Sep; 7(1):10553. PubMed ID: 28874815 [TBL] [Abstract][Full Text] [Related]
36. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Williams CG; Kim TK; Taboas A; Malik A; Manson P; Elisseeff J Tissue Eng; 2003 Aug; 9(4):679-88. PubMed ID: 13678446 [TBL] [Abstract][Full Text] [Related]
37. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Cui X; Breitenkamp K; Lotz M; D'Lima D Biotechnol Bioeng; 2012 Sep; 109(9):2357-68. PubMed ID: 22508498 [TBL] [Abstract][Full Text] [Related]
38. Improved accumulation of TGF-β by photopolymerized chitosan/silk protein bio-hydrogel matrix to improve differentiations of mesenchymal stem cells in articular cartilage tissue regeneration. Shao J; Ding Z; Li L; Chen Y; Zhu J; Qian Q J Photochem Photobiol B; 2020 Jan; 203():111744. PubMed ID: 31887637 [TBL] [Abstract][Full Text] [Related]
39. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Brunelle AR; Horner CB; Low K; Ico G; Nam J Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540 [TBL] [Abstract][Full Text] [Related]
40. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Wang J; Yang Q; Cheng N; Tao X; Zhang Z; Sun X; Zhang Q Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():705-11. PubMed ID: 26838900 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]