BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 31872998)

  • 1. Three-Dimensional Microfluidic Platform with Neural Organoids: Model System for Unraveling Synapses.
    Mukherjee N; Nandi S; Ghosh S; Garg S; Ghosh S
    ACS Chem Neurosci; 2020 Jan; 11(2):101-102. PubMed ID: 31872998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform.
    Rajan SAP; Aleman J; Wan M; Pourhabibi Zarandi N; Nzou G; Murphy S; Bishop CE; Sadri-Ardekani H; Shupe T; Atala A; Hall AR; Skardal A
    Acta Biomater; 2020 Apr; 106():124-135. PubMed ID: 32068138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organoids-on-a-chip.
    Park SE; Georgescu A; Huh D
    Science; 2019 Jun; 364(6444):960-965. PubMed ID: 31171693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation.
    Zheng F; Xiao Y; Liu H; Fan Y; Dao M
    Adv Biol (Weinh); 2021 Jun; 5(6):e2000024. PubMed ID: 33856745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks.
    Carvalho DJ; Kip AM; Tegel A; Stich M; Krause C; Romitti M; Branca C; Verhoeven B; Costagliola S; Moroni L; Giselbrecht S
    Adv Healthc Mater; 2024 May; 13(13):e2303444. PubMed ID: 38247306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Brain-on-a-Chip: From Key Technology to System Integration and Application.
    Wang Z; Zhang Y; Li Z; Wang H; Li N; Deng Y
    Small; 2023 Dec; 19(52):e2304427. PubMed ID: 37653590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Biosensors to Study Organoids, Spheroids and Organs-on-a-Chip: A Mechanobiology Perspective.
    Yousafzai MS; Hammer JA
    Biosensors (Basel); 2023 Sep; 13(10):. PubMed ID: 37887098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D Microfluidic Device with Vertical Channels toward In Vitro Reconstruction of Blood-Brain Barrier.
    Wang T; Dao L; Guo Z; Li T
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic systems for studying neurotransmitters and neurotransmission.
    Croushore CA; Sweedler JV
    Lab Chip; 2013 May; 13(9):1666-76. PubMed ID: 23474943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex.
    Wilson MN; Thunemann M; Liu X; Lu Y; Puppo F; Adams JW; Kim JH; Ramezani M; Pizzo DP; Djurovic S; Andreassen OA; Mansour AA; Gage FH; Muotri AR; Devor A; Kuzum D
    Nat Commun; 2022 Dec; 13(1):7945. PubMed ID: 36572698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons.
    Osaki T; Duenki T; Chow SYA; Ikegami Y; Beaubois R; Levi T; Nakagawa-Tamagawa N; Hirano Y; Ikeuchi Y
    Nat Commun; 2024 Apr; 15(1):2945. PubMed ID: 38600094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of neuronal activity in cortical organoids with bioelectronic delivery of ions and neurotransmitters.
    Park Y; Hernandez S; Hernandez CO; Schweiger HE; Li H; Voitiuk K; Dechiraju H; Hawthorne N; Muzzy EM; Selberg JA; Sullivan FN; Urcuyo R; Salama SR; Aslankoohi E; Knight HJ; Teodorescu M; Mostajo-Radji MA; Rolandi M
    Cell Rep Methods; 2024 Jan; 4(1):100686. PubMed ID: 38218190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes.
    Shin SR; Kilic T; Zhang YS; Avci H; Hu N; Kim D; Branco C; Aleman J; Massa S; Silvestri A; Kang J; Desalvo A; Hussaini MA; Chae SK; Polini A; Bhise N; Hussain MA; Lee H; Dokmeci MR; Khademhosseini A
    Adv Sci (Weinh); 2017 May; 4(5):1600522. PubMed ID: 28546915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus.
    Motz CT; Kabat V; Saxena T; Bellamkonda RV; Zhu C
    Adv Healthc Mater; 2021 Oct; 10(19):e2100102. PubMed ID: 34342167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of microchannel geometry on device performance and electrophysiological recording fidelity during long-term studies of connected neural populations.
    Goshi N; Girardi G; da Costa Souza F; Gardner A; Lein PJ; Seker E
    Lab Chip; 2022 Oct; 22(20):3961-3975. PubMed ID: 36111641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartmentalization of Human Stem Cell-Derived Neurons within Pre-Assembled Plastic Microfluidic Chips.
    Paranjape SR; Nagendran T; Poole V; Harris J; Taylor AM
    J Vis Exp; 2019 May; (147):. PubMed ID: 31107446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A feedback-driven IoT microfluidic, electrophysiology, and imaging platform for brain organoid studies.
    Voitiuk K; Seiler ST; Pessoa de Melo M; Geng J; Hernandez S; Schweiger HE; Sevetson JL; Parks DF; Robbins A; Torres-Montoya S; Ehrlich D; Elliott MAT; Sharf T; Haussler D; Mostajo-Radji MA; Salama SR; Teodorescu M
    bioRxiv; 2024 May; ():. PubMed ID: 38559212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophotonics: a comprehensive review, current challenges and future trends.
    Barros BJ; Cunha JPS
    Front Neurosci; 2024; 18():1382341. PubMed ID: 38765670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic chip for geoelectrical monitoring of critical zone processes.
    Rembert F; Stolz A; Soulaine C; Roman S
    Lab Chip; 2023 Jul; 23(15):3433-3442. PubMed ID: 37417241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic tools for cell biological research.
    Velve-Casquillas G; Le Berre M; Piel M; Tran PT
    Nano Today; 2010 Feb; 5(1):28-47. PubMed ID: 21152269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.