BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31873062)

  • 1. Antisense-Mediated Skipping of Dysferlin Exons in Control and Dysferlinopathy Patient-Derived Cells.
    Verwey N; Gazzoli I; Krause S; Mamchaoui K; Mouly V; Aartsma-Rus A
    Nucleic Acid Ther; 2020 Apr; 30(2):71-79. PubMed ID: 31873062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of pseudoexon splicing caused by a novel intronic dysferlin mutation.
    Dominov JA; Uyan Ö; McKenna-Yasek D; Nallamilli BRR; Kergourlay V; Bartoli M; Levy N; Hudson J; Evangelista T; Lochmuller H; Krahn M; Rufibach L; Hegde M; Brown RH
    Ann Clin Transl Neurol; 2019 Apr; 6(4):642-654. PubMed ID: 31019989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic exon skipping for dysferlinopathies?
    Aartsma-Rus A; Singh KH; Fokkema IF; Ginjaar IB; van Ommen GJ; den Dunnen JT; van der Maarel SM
    Eur J Hum Genet; 2010 Aug; 18(8):889-94. PubMed ID: 20145676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysferlin Exon 32 Skipping in Patient Cells.
    Barthélémy F; Courrier S; Lévy N; Krahn M; Bartoli M
    Methods Mol Biol; 2018; 1828():489-496. PubMed ID: 30171562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping.
    Gao QQ; Wyatt E; Goldstein JA; LoPresti P; Castillo LM; Gazda A; Petrossian N; Earley JU; Hadhazy M; Barefield DY; Demonbreun AR; Bönnemann C; Wolf M; McNally EM
    J Clin Invest; 2015 Nov; 125(11):4186-95. PubMed ID: 26457733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Novel Antisense-Mediated Exon Skipping Targets in DYSF for Therapeutic Treatment of Dysferlinopathy.
    Lee JJA; Maruyama R; Duddy W; Sakurai H; Yokota T
    Mol Ther Nucleic Acids; 2018 Dec; 13():596-604. PubMed ID: 30439648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New developments in exon skipping and splice modulation therapies for neuromuscular diseases.
    Touznik A; Lee JJ; Yokota T
    Expert Opin Biol Ther; 2014 Jun; 14(6):809-19. PubMed ID: 24620745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping.
    Wein N; Avril A; Bartoli M; Beley C; Chaouch S; Laforêt P; Behin A; Butler-Browne G; Mouly V; Krahn M; Garcia L; Lévy N
    Hum Mutat; 2010 Feb; 31(2):136-42. PubMed ID: 19953532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morpholino-Mediated Exons 28-29 Skipping of Dysferlin and Characterization of Multiexon-skipped Dysferlin using RT-PCR, Immunoblotting, and Membrane Wounding Assay.
    Anwar S; Yokota T
    Methods Mol Biol; 2023; 2587():183-196. PubMed ID: 36401031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advancements in exon-skipping therapies using antisense oligonucleotides and genome editing for the treatment of various muscular dystrophies.
    Hwang J; Yokota T
    Expert Rev Mol Med; 2019 Oct; 21():e5. PubMed ID: 31576784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gene-edited mouse model of limb-girdle muscular dystrophy 2C for testing exon skipping.
    Demonbreun AR; Wyatt EJ; Fallon KS; Oosterbaan CC; Page PG; Hadhazy M; Quattrocelli M; Barefield DY; McNally EM
    Dis Model Mech; 2019 Nov; 13(2):. PubMed ID: 31582396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limb Girdle Muscular Dystrophy Type 2B (LGMD2B): Diagnosis and Therapeutic Possibilities.
    Poudel BH; Fletcher S; Wilton SD; Aung-Htut M
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel splicing dysferlin mutation causing myopathy with intra-familial heterogeneity.
    Rekik S; Sakka S; Romdhane SB; Amer YB; Lehkim L; Farhat N; Mahfoudh KB; Authier FJ; Dammak M; Mhiri C
    Mol Biol Rep; 2020 Aug; 47(8):5755-5761. PubMed ID: 32666437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-length dysferlin expression driven by engineered human dystrophic blood derived CD133+ stem cells.
    Meregalli M; Navarro C; Sitzia C; Farini A; Montani E; Wein N; Razini P; Beley C; Cassinelli L; Parolini D; Belicchi M; Parazzoli D; Garcia L; Torrente Y
    FEBS J; 2013 Dec; 280(23):6045-60. PubMed ID: 24028392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational research and therapeutic perspectives in dysferlinopathies.
    Barthélémy F; Wein N; Krahn M; Lévy N; Bartoli M
    Mol Med; 2011; 17(9-10):875-82. PubMed ID: 21556485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Multiexon Skipping by Antisense PMOs in Dystrophic Dog and Exon 7-Deleted DMD Patient.
    Nakamura A; Aoki Y; Tsoumpra M; Yokota T; Takeda S
    Methods Mol Biol; 2018; 1828():151-163. PubMed ID: 30171540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Skipping of Single Exon Duplications in DMD Patient-Derived Cell Lines Using an Antisense Oligonucleotide Approach.
    Wein N; Vulin A; Findlay AR; Gumienny F; Huang N; Wilton SD; Flanigan KM
    J Neuromuscul Dis; 2017; 4(3):199-207. PubMed ID: 28869484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression.
    Lee JJA; Saito T; Duddy W; Takeda S; Yokota T
    Methods Mol Biol; 2018; 1828():141-150. PubMed ID: 30171539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.