These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31873380)

  • 1. Relationship between the source size at the diffuser plane and the longitudinal spatial coherence function of the optical coherence microscopy system.
    Usmani K; Ahmad A; Joshi R; Dubey V; Butola A; Mehta DS
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):D41-D46. PubMed ID: 31873380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence.
    Ahmad A; Mahanty T; Dubey V; Butola A; Ahluwalia BS; Mehta DS
    Opt Lett; 2019 Apr; 44(7):1817-1820. PubMed ID: 30933155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherence theory of a laser beam passing through a moving diffuser.
    Li G; Qiu Y; Li H
    Opt Express; 2013 Jun; 21(11):13032-9. PubMed ID: 23736556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser.
    Stangner T; Zhang H; Dahlberg T; Wiklund K; Andersson M
    Appl Opt; 2017 Jul; 56(19):5427-5435. PubMed ID: 29047500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of diffuser grain size on the speckle tracking technique.
    Tian N; Jiang H; Li A; Liang D; Yan S; Zhang Z
    J Synchrotron Radiat; 2020 Jan; 27(Pt 1):146-157. PubMed ID: 31868747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental optimization of lensless digital holographic microscopy with rotating diffuser-based coherent noise reduction.
    Arcab P; Mirecki B; Stefaniuk M; Pawłowska M; Trusiak M
    Opt Express; 2022 Nov; 30(24):42810-42828. PubMed ID: 36522993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution optical coherence tomography over a large depth range with an axicon lens.
    Ding Z; Ren H; Zhao Y; Nelson JS; Chen Z
    Opt Lett; 2002 Feb; 27(4):243-5. PubMed ID: 18007767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolution-improved dual-beam and standard optical coherence tomography: a comparison.
    Baumgartner A; Hitzenberger CK; Ergun E; Stur M; Sattmann H; Drexler W; Fercher AF
    Graefes Arch Clin Exp Ophthalmol; 2000 May; 238(5):385-92. PubMed ID: 10901469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial resolution and signal-to-noise ratio in deep-tissue imaging with 1.7-μm high-resolution optical coherence tomography with an ultrabroadband laser source.
    Kawagoe H; Yamanaka M; Nishizawa N
    J Biomed Opt; 2017 Aug; 22(8):85002. PubMed ID: 28777837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier DiffuserScope: single-shot 3D Fourier light field microscopy with a diffuser.
    Linda Liu F; Kuo G; Antipa N; Yanny K; Waller L
    Opt Express; 2020 Sep; 28(20):28969-28986. PubMed ID: 33114805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherence-controlled holographic microscope.
    Kolman P; Chmelík R
    Opt Express; 2010 Oct; 18(21):21990-2003. PubMed ID: 20941100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of spatial and temporal coherence in a laser diode with optical feedback.
    Duque Gijón M; Masoller C; Tiana-Alsina J
    Opt Express; 2023 Jun; 31(13):21954-21961. PubMed ID: 37381280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pseudothermal light source's transverse size and coherence width in ghost-interference experiments.
    Vidal I; Caetano DP; Fonseca EJ; Hickmann JM
    Opt Lett; 2009 May; 34(9):1450-2. PubMed ID: 19412302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography.
    Fernández E; Drexler W
    Opt Express; 2005 Oct; 13(20):8184-97. PubMed ID: 19498848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The resolution of photoelectron microscopes with UV, X-ray, and synchrotron excitation sources.
    Rempfer GF; Griffith OH
    Ultramicroscopy; 1989 Apr; 27(3):273-300. PubMed ID: 2749920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh-resolution full-field optical coherence tomography.
    Dubois A; Grieve K; Moneron G; Lecaque R; Vabre L; Boccara C
    Appl Opt; 2004 May; 43(14):2874-83. PubMed ID: 15143811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-image acquisition-based distance sensor using agile laser spot beam.
    Riza NA; Amin MJ
    Appl Opt; 2014 Sep; 53(25):5807-14. PubMed ID: 25321381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating cold atoms through a high-resolution compact system based on a multimode fiber.
    Vitrant N; Müller K; Garcia S; Ourjoumtsev A
    Opt Lett; 2020 Mar; 45(6):1519-1522. PubMed ID: 32164006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-coherence dye laser with an intracavity radiation diffuser.
    Burdukova OA; Konyshkin VA; Petukhov VA; Semenov MA; Senatsky YV
    Opt Express; 2021 Apr; 29(8):11453-11467. PubMed ID: 33984924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography.
    Safrani A; Abdulhalim I
    Appl Opt; 2011 Jun; 50(18):3021-7. PubMed ID: 21691370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.