These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31873414)

  • 1. Optical coherence tomography using physical domain data compression to achieve MHz A-scan rates.
    Stroud JR; Liu L; Chin S; Tran TD; Foster MA
    Opt Express; 2019 Dec; 27(25):36329-36339. PubMed ID: 31873414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition.
    Guo Q; Chen H; Weng Z; Chen M; Yang S; Xie S
    Opt Express; 2015 Nov; 23(23):29639-46. PubMed ID: 26698446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch.
    Xu J; Wei X; Yu L; Zhang C; Xu J; Wong KK; Tsia KK
    Biomed Opt Express; 2015 Apr; 6(4):1340-50. PubMed ID: 25909017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography.
    Kang J; Feng P; Wei X; Lam EY; Tsia KK; Wong KKY
    Opt Express; 2018 Feb; 26(4):4370-4381. PubMed ID: 29475287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volumetric (3D) compressive sensing spectral domain optical coherence tomography.
    Xu D; Huang Y; Kang JU
    Biomed Opt Express; 2014 Nov; 5(11):3921-34. PubMed ID: 25426320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave photonic radar for distance and velocity measurement based on optical mixing and compressive sensing.
    Ding Y; Guo S; Zhou W; Dong W
    Appl Opt; 2021 Sep; 60(27):8534-8539. PubMed ID: 34612956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined in-depth, 3D, en face imaging of the optic disc, optic disc pits and optic disc pit maculopathy using swept-source megahertz OCT at 1050 nm.
    Maertz J; Kolb JP; Klein T; Mohler KJ; Eibl M; Wieser W; Huber R; Priglinger S; Wolf A
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):289-298. PubMed ID: 29238852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-MHz retinal OCT.
    Klein T; Wieser W; Reznicek L; Neubauer A; Kampik A; Huber R
    Biomed Opt Express; 2013; 4(10):1890-908. PubMed ID: 24156052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging.
    Pfeiffer T; Göb M; Draxinger W; Karpf S; Kolb JP; Huber R
    Biomed Opt Express; 2020 Nov; 11(11):6799-6811. PubMed ID: 33282524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT).
    Xu J; Wei X; Yu L; Zhang C; Xu J; Wong KK; Tsia KK
    Opt Express; 2014 Sep; 22(19):22498-512. PubMed ID: 25321720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography.
    Pfeiffer T; Petermann M; Draxinger W; Jirauschek C; Huber R
    Biomed Opt Express; 2018 Sep; 9(9):4130-4148. PubMed ID: 30615700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid volumetric OCT image acquisition using compressive sampling.
    Lebed E; Mackenzie PJ; Sarunic MV; Beg MF
    Opt Express; 2010 Sep; 18(20):21003-12. PubMed ID: 20940995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch.
    Xu J; Zhang C; Xu J; Wong KK; Tsia KK
    Opt Lett; 2014 Feb; 39(3):622-5. PubMed ID: 24487881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography.
    Young M; Lebed E; Jian Y; Mackenzie PJ; Beg MF; Sarunic MV
    Biomed Opt Express; 2011 Sep; 2(9):2690-7. PubMed ID: 21991557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interleaved optical coherence tomography.
    Lee HY; Sudkamp H; Marvdashti T; Ellerbee AK
    Opt Express; 2013 Nov; 21(22):26542-56. PubMed ID: 24216876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second.
    Wieser W; Biedermann BR; Klein T; Eigenwillig CM; Huber R
    Opt Express; 2010 Jul; 18(14):14685-704. PubMed ID: 20639955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators.
    Kang J; Feng P; Li B; Zhang C; Wei X; Lam EY; Tsia KK; Wong KKY
    Opt Express; 2018 Sep; 26(19):24928-24939. PubMed ID: 30469601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time dispersion-compensated image reconstruction for compressive sensing spectral domain optical coherence tomography.
    Xu D; Huang Y; Kang JU
    J Opt Soc Am A Opt Image Sci Vis; 2014 Sep; 31(9):2064-9. PubMed ID: 25401447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography.
    Zhang N; Huo T; Wang C; Chen T; Zheng JG; Xue P
    Opt Lett; 2012 Aug; 37(15):3075-7. PubMed ID: 22859090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.