These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31873421)

  • 1. Machine learning approach for computing optical properties of a photonic crystal fiber.
    Chugh S; Gulistan A; Ghosh S; Rahman BMA
    Opt Express; 2019 Dec; 27(25):36414-36425. PubMed ID: 31873421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses.
    Saitoh K; Florous N; Koshiba M
    Opt Express; 2005 Oct; 13(21):8365-71. PubMed ID: 19498866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical analysis of large negative dispersion photonic crystal fiber with small confinement loss.
    Rahaman ME; Hossain MM; Shekhar Mondal H; Saha R; Saif Muntaseer A
    Appl Opt; 2020 Oct; 59(28):8925-8931. PubMed ID: 33104579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on Nonlinear Spectral Properties of Photonic Crystal Fiber in Theory and Experiment].
    Zhao XT; Wang ST; Liu XX; Han Y; Zhao YY; Li SG; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1650-5. PubMed ID: 30052365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient calculation of optical properties of suspended-core fiber via a machine learning algorithm.
    Yuan S; Chen S; Yang J; Yang Q; Ren S; Wang G; Yu B
    Appl Opt; 2022 Jul; 61(19):5714-5721. PubMed ID: 36255803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced grey wolf algorithm for automatic tuning of an ensemble neural network in predicting PCF optical properties.
    Xu Q; Yang H; Yuan X; Rong J; Zhao J
    Opt Express; 2023 Dec; 31(26):43790-43803. PubMed ID: 38178467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid photonic crystal fiber in chemical sensing.
    Asaduzzaman S; Ahmed K; Bhuiyan T; Farah T
    Springerplus; 2016; 5(1):748. PubMed ID: 27386231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms.
    Florous N; Saitoh K; Koshiba M
    Opt Express; 2006 Jan; 14(2):901-13. PubMed ID: 19503410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing PCF-SPR sensor design through Taguchi approach, machine learning, and genetic algorithms.
    Kaziz S; Echouchene F; Gazzah MH
    Sci Rep; 2024 Apr; 14(1):7837. PubMed ID: 38570590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic nanojet focusing for hollow-core photonic crystal fiber probes.
    Ghenuche P; Rigneault H; Wenger J
    Appl Opt; 2012 Dec; 51(36):8637-40. PubMed ID: 23262605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental studies on the core-structure dependence of backward Brillouin gain in solid-core photonic crystal fibers.
    Ji G; Huang Z; He W; Yin R; Zheng Y; Kumar V; Jiang X; Leng Y; Pang M
    Opt Express; 2023 Oct; 31(22):35742-35753. PubMed ID: 38017739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical comparison between conventional dispersion compensating fibers and photonic crystal fibers as lumped Raman amplifiers.
    Castellani CE; Cani SP; Segatto ME; Pontes MJ; Romero MA
    Opt Express; 2009 Dec; 17(25):23169-80. PubMed ID: 20052245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating refractive index, homogeneity and spectroscopy of Yb
    Wang F; Hu L; Xu W; Wang M; Feng S; Ren J; Zhang L; Chen D; Ollier N; Gao G; Yu C; Wang S
    Opt Express; 2017 Oct; 25(21):25960-25969. PubMed ID: 29041258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The measurement and numerical study of numerical aperture of photonic crystal fiber].
    Guo YY; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1908-12. PubMed ID: 20827997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber.
    Yamamoto N; Tao L; Yalin AP
    Opt Express; 2009 Sep; 17(19):16933-40. PubMed ID: 19770911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-joule level visible supercontinuum generation in seven-core photonic crystal fibers pumped by a 515  nm laser.
    Bi W; Liu Y; Li X; Liao M; Hu L; Ge W; He F; Kuan PW; Yu F; Wang T; Wang L; Gao W
    Opt Lett; 2019 Oct; 44(20):5041-5044. PubMed ID: 31613258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-loss photonic crystal fibers for transmission systems and their dispersion properties.
    Nielsen M; Jacobsen C; Mortensen N; Folkenberg J; Simonsen H
    Opt Express; 2004 Apr; 12(7):1372-6. PubMed ID: 19474958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of THz wave transmission performance in TOPAS-based heptagonal photonic crystal fiber (He-PCF).
    Hossain MS; Hossen R; Al-Amin M; Ahmed S; Sen S
    Heliyon; 2024 Feb; 10(3):e25622. PubMed ID: 38371994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs.
    Xiao L; Jin W; Demokan MS
    Opt Express; 2007 Nov; 15(24):15637-47. PubMed ID: 19550851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Silica-Based Large Mode Area and Polarization-Maintaining Photonic Crystal Fiber Research.
    Ma Y; Wan R; Li S; Yang L; Wang P
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.