BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31873725)

  • 1. Causal network perturbations for instance-specific analysis of single cell and disease samples.
    Buschur KL; Chikina M; Benos PV
    Bioinformatics; 2020 Apr; 36(8):2515-2521. PubMed ID: 31873725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. piMGM: incorporating multi-source priors in mixed graphical models for learning disease networks.
    Manatakis DV; Raghu VK; Benos PV
    Bioinformatics; 2018 Sep; 34(17):i848-i856. PubMed ID: 30423087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring data-specific micro-RNA function through the joint ranking of micro-RNA and pathways from matched micro-RNA and gene expression data.
    Patrick E; Buckley M; Müller S; Lin DM; Yang JY
    Bioinformatics; 2015 Sep; 31(17):2822-8. PubMed ID: 25910695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DCI: learning causal differences between gene regulatory networks.
    Belyaeva A; Squires C; Uhler C
    Bioinformatics; 2021 Sep; 37(18):3067-3069. PubMed ID: 33704425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian network prior: network analysis of biological data using external knowledge.
    Isci S; Dogan H; Ozturk C; Otu HH
    Bioinformatics; 2014 Mar; 30(6):860-7. PubMed ID: 24215027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-species pathway perturbation prediction via data-driven detection of functional homology.
    Hafemeister C; Romero R; Bilal E; Meyer P; Norel R; Rhrissorrakrai K; Bonneau R; Tarca AL
    Bioinformatics; 2015 Feb; 31(4):501-8. PubMed ID: 25150249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
    Ma S; Jiang T; Jiang R
    Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting protein phosphorylation from gene expression: top methods from the IMPROVER Species Translation Challenge.
    Dayarian A; Romero R; Wang Z; Biehl M; Bilal E; Hormoz S; Meyer P; Norel R; Rhrissorrakrai K; Bhanot G; Luo F; Tarca AL
    Bioinformatics; 2015 Feb; 31(4):462-70. PubMed ID: 25061067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BoolNet--an R package for generation, reconstruction and analysis of Boolean networks.
    Müssel C; Hopfensitz M; Kestler HA
    Bioinformatics; 2010 May; 26(10):1378-80. PubMed ID: 20378558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-based comparison of temporal gene expression patterns.
    Huang W; Cao X; Zhong S
    Bioinformatics; 2010 Dec; 26(23):2944-51. PubMed ID: 20889495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SMARTS: reconstructing disease response networks from multiple individuals using time series gene expression data.
    Wise A; Bar-Joseph Z
    Bioinformatics; 2015 Apr; 31(8):1250-7. PubMed ID: 25480376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DINGO: differential network analysis in genomics.
    Ha MJ; Baladandayuthapani V; Do KA
    Bioinformatics; 2015 Nov; 31(21):3413-20. PubMed ID: 26148744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADEPTUS: a discovery tool for disease prediction, enrichment and network analysis based on profiles from many diseases.
    Amar D; Vizel A; Levy C; Shamir R
    Bioinformatics; 2018 Jun; 34(11):1959-1961. PubMed ID: 29360930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BaiHui: cross-species brain-specific network built with hundreds of hand-curated datasets.
    Li HD; Bai T; Sandford E; Burmeister M; Guan Y
    Bioinformatics; 2019 Jul; 35(14):2486-2488. PubMed ID: 30521009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferred miRNA activity identifies miRNA-mediated regulatory networks underlying multiple cancers.
    Lee E; Ito K; Zhao Y; Schadt EE; Irie HY; Zhu J
    Bioinformatics; 2016 Jan; 32(1):96-105. PubMed ID: 26358730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions.
    Yan Z; Hamilton WL; Blanchette M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i276-i284. PubMed ID: 32657407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xtalk: a path-based approach for identifying crosstalk between signaling pathways.
    Tegge AN; Sharp N; Murali TM
    Bioinformatics; 2016 Jan; 32(2):242-51. PubMed ID: 26400040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.