These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31873834)
1. Gait event detection using inertial measurement units in people with transfemoral amputation: a comparative study. Simonetti E; Villa C; Bascou J; Vannozzi G; Bergamini E; Pillet H Med Biol Eng Comput; 2020 Mar; 58(3):461-470. PubMed ID: 31873834 [TBL] [Abstract][Full Text] [Related]
2. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods. Storm FA; Buckley CJ; MazzĂ C Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451 [TBL] [Abstract][Full Text] [Related]
3. Estimation of the walking speed of individuals with transfemoral amputation from a single prosthetic shank-mounted IMU. Dauriac B; Bonnet X; Pillet H; Lavaste F Proc Inst Mech Eng H; 2019 Sep; 233(9):931-937. PubMed ID: 31218905 [TBL] [Abstract][Full Text] [Related]
4. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors. Olsen E; Andersen PH; Pfau T Sensors (Basel); 2012; 12(6):8145-56. PubMed ID: 22969392 [TBL] [Abstract][Full Text] [Related]
5. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms. Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913 [TBL] [Abstract][Full Text] [Related]
6. Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy. Ledoux ED IEEE Trans Biomed Eng; 2018 Dec; 65(12):2704-2712. PubMed ID: 29993444 [TBL] [Abstract][Full Text] [Related]
7. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients. Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105 [TBL] [Abstract][Full Text] [Related]
8. Validation of an algorithm to assess regular and irregular gait using inertial sensors in healthy and stroke individuals. Ensink C; Smulders K; Warnar J; Keijsers N PeerJ; 2023; 11():e16641. PubMed ID: 38111664 [TBL] [Abstract][Full Text] [Related]
9. Validation of Running Gait Event Detection Algorithms in a Semi-Uncontrolled Environment. Donahue SR; Hahn ME Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591141 [TBL] [Abstract][Full Text] [Related]
10. Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk. Trojaniello D; Cereatti A; Della Croce U Gait Posture; 2014 Sep; 40(4):487-92. PubMed ID: 25085660 [TBL] [Abstract][Full Text] [Related]
11. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations. Celik Y; Stuart S; Woo WL; Godfrey A Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799 [TBL] [Abstract][Full Text] [Related]
12. Validation of distal limb mounted inertial measurement unit sensors for stride detection in Warmblood horses at walk and trot. Bragança FM; Bosch S; Voskamp JP; Marin-Perianu M; Van der Zwaag BJ; Vernooij JCM; van Weeren PR; Back W Equine Vet J; 2017 Jul; 49(4):545-551. PubMed ID: 27862238 [TBL] [Abstract][Full Text] [Related]
13. Validation of IMU against optical reference and development of open-source pipeline: proof of concept case report in a participant with transfemoral amputation fitted with a Percutaneous Osseointegrated Implant. Ahmed K; Taheri S; Weygers I; Ortiz-Catalan M J Neuroeng Rehabil; 2024 Jul; 21(1):128. PubMed ID: 39085954 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137 [TBL] [Abstract][Full Text] [Related]
15. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection. Nazarahari M; Khandan A; Khan A; Rouhani H J Biomech; 2022 Jan; 130():110880. PubMed ID: 34871897 [TBL] [Abstract][Full Text] [Related]
16. Ground reaction forces during double limb stances while walking in individuals with unilateral transfemoral amputation. Kobayashi T; Koh MWP; Jor A; Hisano G; Murata H; Ichimura D; Hobara H Front Bioeng Biotechnol; 2022; 10():1041060. PubMed ID: 36727041 [TBL] [Abstract][Full Text] [Related]
17. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts. Romijnders R; Warmerdam E; Hansen C; Schmidt G; Maetzler W Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632266 [TBL] [Abstract][Full Text] [Related]
18. Real-time gait event detection for lower limb amputees using a single wearable sensor. Maqbool HF; Husman MA; Awad MI; Abouhossein A; Mehryar P; Iqbal N; Dehghani-Sanij AA Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5067-5070. PubMed ID: 28269407 [TBL] [Abstract][Full Text] [Related]
19. Comparing adaptive algorithms to measure temporal gait parameters using lower body mounted inertial sensors. Patterson MR; Caulfield B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4509-12. PubMed ID: 23366930 [TBL] [Abstract][Full Text] [Related]
20. Plantar pressures and ground reaction forces during walking of individuals with unilateral transfemoral amputation. Castro MP; Soares D; Mendes E; Machado L PM R; 2014 Aug; 6(8):698-707.e1. PubMed ID: 24487128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]