These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31873834)

  • 21. Validation and comparison of shank and lumbar-worn IMUs for step time estimation.
    Johnston W; Patterson M; O'Mahony N; Caulfield B
    Biomed Tech (Berl); 2017 Oct; 62(5):537-545. PubMed ID: 28002026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional acceleration of the body center of mass in people with transfemoral amputation: Identification of a minimal body segment network.
    Simonetti E; Bergamini E; Bascou J; Vannozzi G; Pillet H
    Gait Posture; 2021 Oct; 90():129-136. PubMed ID: 34455201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases.
    Romijnders R; Salis F; Hansen C; Küderle A; Paraschiv-Ionescu A; Cereatti A; Alcock L; Aminian K; Becker C; Bertuletti S; Bonci T; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Chiari L; D'Ascanio I; Del Din S; Eskofier B; Fernstad SJ; Fröhlich MS; Garcia Aymerich J; Gazit E; Hausdorff JM; Hiden H; Hume E; Keogh A; Kirk C; Kluge F; Koch S; Mazzà C; Megaritis D; Micó-Amigo E; Müller A; Palmerini L; Rochester L; Schwickert L; Scott K; Sharrack B; Singleton D; Soltani A; Ullrich M; Vereijken B; Vogiatzis I; Yarnall A; Schmidt G; Maetzler W
    Front Neurol; 2023; 14():1247532. PubMed ID: 37909030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are Gait Parameters for Through-knee Amputees Different From Matched Transfemoral Amputees?
    Schuett DJ; Wyatt MP; Kingsbury T; Thesing N; Dromsky DM; Kuhn KM
    Clin Orthop Relat Res; 2019 Apr; 477(4):821-825. PubMed ID: 30811368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are wearable insoles a validated tool for quantifying transfemoral amputee gait asymmetry?
    Loiret I; Villa C; Dauriac B; Bonnet X; Martinet N; Paysant J; Pillet H
    Prosthet Orthot Int; 2019 Oct; 43(5):492-499. PubMed ID: 31364482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does an inverted pendulum model represent the gait of individuals with unilateral transfemoral amputation while walking over level ground?
    Strutzenberger G; Alexander N; De Asha A; Schwameder H; Barnett CT
    Prosthet Orthot Int; 2019 Apr; 43(2):221-226. PubMed ID: 30168357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of Gait Parameters for Transfemoral Amputees Using Lower Limb Kinematics and Deterministic Algorithms.
    Aftab Z; Ahmed G; Ali A; Gillani N
    Appl Bionics Biomech; 2022; 2022():2883026. PubMed ID: 36312314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inertial sensor-based measures of gait symmetry and repeatability in people with unilateral lower limb amputation.
    Clemens S; Kim KJ; Gailey R; Kirk-Sanchez N; Kristal A; Gaunaurd I
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():102-107. PubMed ID: 31862603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inertial Measurement Unit-Based Estimation of Foot Trajectory for Clinical Gait Analysis.
    Hori K; Mao Y; Ono Y; Ora H; Hirobe Y; Sawada H; Inaba A; Orimo S; Miyake Y
    Front Physiol; 2019; 10():1530. PubMed ID: 31998138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of gait parameters using leg velocity for amputee population.
    Aftab Z; Shad R
    PLoS One; 2022; 17(5):e0266726. PubMed ID: 35560138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unrestricted stride detection during stair climbing using IMUs.
    Siebers HL; Siroros N; Alrawashdeh W; Migliorini F; Tingart M; Eschweiler J; Betsch M
    Med Eng Phys; 2021 Jun; 92():10-17. PubMed ID: 34167703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indirect measurement of anterior-posterior ground reaction forces using a minimal set of wearable inertial sensors: from healthy to hemiparetic walking.
    Revi DA; Alvarez AM; Walsh CJ; De Rossi SMM; Awad LN
    J Neuroeng Rehabil; 2020 Jun; 17(1):82. PubMed ID: 32600348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Principal component analysis in ground reaction forces and center of pressure gait waveforms of people with transfemoral amputation.
    Soares DP; de Castro MP; Mendes EA; Machado L
    Prosthet Orthot Int; 2016 Dec; 40(6):729-738. PubMed ID: 26598512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait asymmetrical evaluation of lower limb amputees using wearable inertial sensors.
    Maqbool HF; Mahmood I; Ali A; Iqbal N; Seong JT; Dehghani-Sanij AA; Alaziz SN; Awad MI
    Heliyon; 2024 Jun; 10(12):e32207. PubMed ID: 38975224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of IMU set-ups for the estimation of gait spatio-temporal parameters in an elderly population.
    Digo E; Panero E; Agostini V; Gastaldi L
    Proc Inst Mech Eng H; 2023 Jan; 237(1):61-73. PubMed ID: 36377588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.
    Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R
    Front Neurorobot; 2019; 13():57. PubMed ID: 31396072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-Time Gait Event Detection with Adaptive Frequency Oscillators from a Single Head-Mounted IMU.
    Tomc M; Matjačić Z
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A characterisation of established unilateral transfemoral amputee gait using 3D kinematics, kinetics and oxygen consumption measures.
    Carse B; Scott H; Brady L; Colvin J
    Gait Posture; 2020 Jan; 75():98-104. PubMed ID: 31645007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium.
    Micó-Amigo ME; Bonci T; Paraschiv-Ionescu A; Ullrich M; Kirk C; Soltani A; Küderle A; Gazit E; Salis F; Alcock L; Aminian K; Becker C; Bertuletti S; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; D'Ascanio I; Eskofier B; Fernstad S; Froehlich M; Garcia-Aymerich J; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Kluge F; Koch S; Maetzler W; Megaritis D; Mueller A; Niessen M; Palmerini L; Schwickert L; Scott K; Sharrack B; Sillén H; Singleton D; Vereijken B; Vogiatzis I; Yarnall AJ; Rochester L; Mazzà C; Del Din S;
    J Neuroeng Rehabil; 2023 Jun; 20(1):78. PubMed ID: 37316858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The development and concurrent validity of a real-time algorithm for temporal gait analysis using inertial measurement units.
    Allseits E; Lučarević J; Gailey R; Agrawal V; Gaunaurd I; Bennett C
    J Biomech; 2017 Apr; 55():27-33. PubMed ID: 28302315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.