These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31873834)
61. Machine-Learning Based Determination of Gait Events from Foot-Mounted Inertial Units. Zago M; Tarabini M; Delfino Spiga M; Ferrario C; Bertozzi F; Sforza C; Galli M Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33513999 [TBL] [Abstract][Full Text] [Related]
62. Determining asymmetry of roll-over shapes in prosthetic walking. Curtze C; Otten B; Hof AL; Postema K J Rehabil Res Dev; 2011; 48(10):1249-60. PubMed ID: 22234668 [TBL] [Abstract][Full Text] [Related]
63. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors. Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451 [TBL] [Abstract][Full Text] [Related]
64. Gait Event Detection From Accelerometry Using the Teager-Kaiser Energy Operator. Flood MW; O'Callaghan BPF; Lowery MM IEEE Trans Biomed Eng; 2020 Mar; 67(3):658-666. PubMed ID: 31150328 [TBL] [Abstract][Full Text] [Related]
65. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals. Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820 [TBL] [Abstract][Full Text] [Related]
66. A preliminary investigation of pelvic obliquity patterns during gait in persons with transtibial and transfemoral amputation. Michaud SB; Gard SA; Childress DS J Rehabil Res Dev; 2000; 37(1):1-10. PubMed ID: 10847567 [TBL] [Abstract][Full Text] [Related]
67. Development of an IMU-based foot-ground contact detection (FGCD) algorithm. Kim M; Lee D Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742 [TBL] [Abstract][Full Text] [Related]
68. RNN-Based On-Line Continuous Gait Phase Estimation from Shank-Mounted IMUs to Control Ankle Exoskeletons. Seo K; Park YJ; Lee J; Hyung S; Lee M; Kim J; Choi H; Shim Y IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():809-815. PubMed ID: 31374730 [TBL] [Abstract][Full Text] [Related]
69. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: application to elderly, hemiparetic, parkinsonian and choreic gait. Trojaniello D; Cereatti A; Pelosin E; Avanzino L; Mirelman A; Hausdorff JM; Della Croce U J Neuroeng Rehabil; 2014 Nov; 11():152. PubMed ID: 25388296 [TBL] [Abstract][Full Text] [Related]
70. The biomechanical response of persons with transfemoral amputation to variations in prosthetic knee alignment during level walking. Koehler-McNicholas SR; Lipschutz RD; Gard SA J Rehabil Res Dev; 2016; 53(6):1089-1106. PubMed ID: 28355034 [TBL] [Abstract][Full Text] [Related]
71. An Algorithm for Accurate Marker-Based Gait Event Detection in Healthy and Pathological Populations During Complex Motor Tasks. Bonci T; Salis F; Scott K; Alcock L; Becker C; Bertuletti S; Buckley E; Caruso M; Cereatti A; Del Din S; Gazit E; Hansen C; Hausdorff JM; Maetzler W; Palmerini L; Rochester L; Schwickert L; Sharrack B; Vogiatzis I; Mazzà C Front Bioeng Biotechnol; 2022; 10():868928. PubMed ID: 35721859 [TBL] [Abstract][Full Text] [Related]
72. Validity and repeatability of inertial measurement units for measuring gait parameters. Washabaugh EP; Kalyanaraman T; Adamczyk PG; Claflin ES; Krishnan C Gait Posture; 2017 Jun; 55():87-93. PubMed ID: 28433867 [TBL] [Abstract][Full Text] [Related]
74. IMU-Based Real-Time Estimation of Gait Phase Using Multi-Resolution Neural Networks. Tang L; Shushtari M; Arami A Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676007 [TBL] [Abstract][Full Text] [Related]
75. Stance Phase Detection by Inertial Measurement Unit Placed on the Metacarpus of Horses Trotting on Hard and Soft Straight Lines and Circles. Hatrisse C; Macaire C; Sapone M; Hebert C; Hanne-Poujade S; De Azevedo E; Marin F; Martin P; Chateau H Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161452 [TBL] [Abstract][Full Text] [Related]
76. Comparative assessment of heel rise detection for consistent gait phase separation. Salminen M; Perttunen J; Avela J; Vehkaoja A Heliyon; 2024 Jul; 10(13):e33546. PubMed ID: 39040320 [TBL] [Abstract][Full Text] [Related]
77. Kinetic differences between level walking and ramp descent in individuals with unilateral transfemoral amputation using a prosthetic knee without a stance control mechanism. Okita Y; Yamasaki N; Nakamura T; Kubo T; Mitsumoto A; Akune T Gait Posture; 2018 Jun; 63():80-85. PubMed ID: 29723652 [TBL] [Abstract][Full Text] [Related]
78. Pelvic obliquity as a compensatory mechanism leading to lower energy recovery: Characterization among the types of prostheses in subjects with transfemoral amputation. Castiglia SF; Ranavolo A; Varrecchia T; De Marchis C; Tatarelli A; Magnifica F; Fiori L; Conte C; Draicchio F; Conforto S; Serrao M Gait Posture; 2020 Jul; 80():280-284. PubMed ID: 32563728 [TBL] [Abstract][Full Text] [Related]
79. Pressure-Sensitive Insoles for Real-Time Gait-Related Applications. Martini E; Fiumalbi T; Dell'Agnello F; Ivanić Z; Munih M; Vitiello N; Crea S Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155828 [TBL] [Abstract][Full Text] [Related]
80. Free-living and laboratory gait characteristics in patients with multiple sclerosis. Storm FA; Nair KPS; Clarke AJ; Van der Meulen JM; Mazzà C PLoS One; 2018; 13(5):e0196463. PubMed ID: 29715279 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]