BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31874198)

  • 1. CypD deficiency confers neuroprotection against mitochondrial abnormality caused by lead in SH-SY5Y cell.
    Ye F; Li X; Liu Y; Jiang A; Li X; Yang L; Chang W; Yuan J; Chen J
    Toxicol Lett; 2020 May; 323():25-34. PubMed ID: 31874198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclosporin A protects against Lead neurotoxicity through inhibiting mitochondrial permeability transition pore opening in nerve cells.
    Ye F; Li X; Li F; Li J; Chang W; Yuan J; Chen J
    Neurotoxicology; 2016 Dec; 57():203-213. PubMed ID: 27725305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-Molecule Inhibitors of Cyclophilins Block Opening of the Mitochondrial Permeability Transition Pore and Protect Mice From Hepatic Ischemia/Reperfusion Injury.
    Panel M; Ruiz I; Brillet R; Lafdil F; Teixeira-Clerc F; Nguyen CT; Calderaro J; Gelin M; Allemand F; Guichou JF; Ghaleh B; Ahmed-Belkacem A; Morin D; Pawlotsky JM
    Gastroenterology; 2019 Nov; 157(5):1368-1382. PubMed ID: 31336123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclophilin D knockout protects the mouse kidney against cyclosporin A-induced oxidative stress.
    Klawitter J; Klawitter J; Pennington A; Kirkpatrick B; Roda G; Kotecha NC; Thurman JM; Christians U
    Am J Physiol Renal Physiol; 2019 Sep; 317(3):F683-F694. PubMed ID: 31188033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclophilin D-mediated Mitochondrial Permeability Transition Regulates Mitochondrial Function.
    Zhou S; Yu Q; Zhang L; Jiang Z
    Curr Pharm Des; 2023; 29(8):620-629. PubMed ID: 36915987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineating a role for the mitochondrial permeability transition pore in diabetic kidney disease by targeting cyclophilin D.
    Lindblom RSJ; Higgins GC; Nguyen TV; Arnstein M; Henstridge DC; Granata C; Snelson M; Thallas-Bonke V; Cooper ME; Forbes JM; Coughlan MT
    Clin Sci (Lond); 2020 Jan; 134(2):239-259. PubMed ID: 31943002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift.
    Armstrong JA; Cash NJ; Ouyang Y; Morton JC; Chvanov M; Latawiec D; Awais M; Tepikin AV; Sutton R; Criddle DN
    J Biol Chem; 2018 May; 293(21):8032-8047. PubMed ID: 29626097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Approach to Elucidate the Role of Cyclophilin D in Traumatic Brain Injury Pathology.
    Readnower RD; Hubbard WB; Kalimon OJ; Geddes JW; Sullivan PG
    Cells; 2021 Jan; 10(2):. PubMed ID: 33498273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of Cyclophilin D Attenuates Oxidative Stress-Induced Cell Death in Human Dental Pulp Cells.
    Huang S; Zheng B; Jin X; Yu Q; Zhang X; Sun X; Chen Y; Ren X; Wismeijer D; Ma J; Zhang C; Wu G; Pan Y
    Oxid Med Cell Longev; 2019; 2019():1729013. PubMed ID: 31089403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells.
    Xiao A; Gan X; Chen R; Ren Y; Yu H; You C
    Biochem Biophys Res Commun; 2017 Jan; 483(1):765-771. PubMed ID: 27993675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells.
    Wang Y; Zhang M; Li Z; Yue J; Xu M; Zhang Y; Yung KKL; Li R
    Chemosphere; 2019 Mar; 218():577-588. PubMed ID: 30502696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclophilin D Regulates Oxidative Stress and Apoptosis
    Hong K; Yang Q; Liu G; Qiu H; Yu B
    Curr Mol Med; 2023; 23(9):971-980. PubMed ID: 36089783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease.
    Du H; Guo L; Fang F; Chen D; Sosunov AA; McKhann GM; Yan Y; Wang C; Zhang H; Molkentin JD; Gunn-Moore FJ; Vonsattel JP; Arancio O; Chen JX; Yan SD
    Nat Med; 2008 Oct; 14(10):1097-105. PubMed ID: 18806802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen sulfide inhibits Ca
    Papu John AS; Kundu S; Pushpakumar S; Amin M; Tyagi SC; Sen U
    Am J Physiol Endocrinol Metab; 2019 Aug; 317(2):E269-E283. PubMed ID: 31039005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of mitochondrial permeability transition pore (mPTP) in cardiac arrhythmias: Evidence from cyclophilin D knockout mice.
    Gordan R; Fefelova N; Gwathmey JK; Xie LH
    Cell Calcium; 2016 Dec; 60(6):363-372. PubMed ID: 27616659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation.
    Gan X; Zhang L; Liu B; Zhu Z; He Y; Chen J; Zhu J; Yu H
    J Physiol Biochem; 2018 Aug; 74(3):395-402. PubMed ID: 29679227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estrogen receptor beta modulates permeability transition in brain mitochondria.
    Burstein SR; Kim HJ; Fels JA; Qian L; Zhang S; Zhou P; Starkov AA; Iadecola C; Manfredi G
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):423-433. PubMed ID: 29550215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore.
    Li L; Han W; Gu Y; Qiu S; Lu Q; Jin J; Luo J; Hu X
    Cancer Res; 2007 May; 67(10):4894-903. PubMed ID: 17510419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclophilin D Knock-Out Mice Show Enhanced Resistance to Osteoporosis and to Metabolic Changes Observed in Aging Bone.
    Shum LC; White NS; Nadtochiy SM; Bentley KL; Brookes PS; Jonason JH; Eliseev RA
    PLoS One; 2016; 11(5):e0155709. PubMed ID: 27183225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead.
    Liu G; Wang ZK; Wang ZY; Yang DB; Liu ZP; Wang L
    Arch Toxicol; 2016 May; 90(5):1193-209. PubMed ID: 26082307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.