These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31874754)

  • 1. Activating palladium nanoparticles via a Mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction.
    Chen M; Shu S; Li J; Lv X; Dong F; Jiang G
    J Hazard Mater; 2020 May; 389():121876. PubMed ID: 31874754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the metal-support interactions at the Pd-polymer carbon nitride Mott-Schottky heterojunction interface for an enhanced electrocatalytic hydrodechlorination reaction.
    Jiang K; Shi X; Chen M; Lv X; Gong H; Shen Y; Wang P; Dong F; Liu M; Zhang X; Jiang G
    J Hazard Mater; 2021 Jun; 411():125119. PubMed ID: 33485220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying the rate-determining step of the electrocatalytic hydrodechlorination reaction on palladium nanoparticles.
    Fu W; Shu S; Li J; Shi X; Lv X; Huang YX; Dong F; Jiang G
    Nanoscale; 2019 Aug; 11(34):15892-15899. PubMed ID: 31464326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Ligand Environment Boosts the Electrocatalytic Hydrodechlorination Reaction on Palladium Nanoparticles.
    Jiang G; Shi X; Cui M; Wang W; Wang P; Johnson G; Nie Y; Lv X; Zhang X; Dong F; Zhang S
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4072-4083. PubMed ID: 33438993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong pyrrolic-N-Pd interactions boost the electrocatalytic hydrodechlorination reaction on palladium nanoparticles.
    Wang P; Shi X; Fu C; Li X; Li J; Lv X; Chu Y; Dong F; Jiang G
    Nanoscale; 2020 Jan; 12(2):843-850. PubMed ID: 31830178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Active Hydrogen Species on Palladium Nanoparticles for an Enhanced Electrocatalytic Hydrodechlorination of 2,4-Dichlorophenol in Water.
    Jiang G; Lan M; Zhang Z; Lv X; Lou Z; Xu X; Dong F; Zhang S
    Environ Sci Technol; 2017 Jul; 51(13):7599-7605. PubMed ID: 28541678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic hydrodechlorination system with antiscaling and anti-chlorine poisoning features for salt-laden wastewater treatment.
    Hu L; Shi L; Shen F; Tong Q; Lv X; Li Y; Liu Z; Ao L; Zhang X; Jiang G; Hou L
    Water Res; 2022 Oct; 225():119210. PubMed ID: 36215844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-rich palladium regulated by cationic vacancies in CoFe layered double hydroxide boosts electrocatalytic hydrodechlorination.
    Kong Z; Li D; Cai R; Li T; Diao L; Chen X; Wang X; Zheng H; Jia Y; Yang D
    J Hazard Mater; 2024 Feb; 463():132964. PubMed ID: 37951175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing an Electron-Deficient Pd/NiCo
    Yu W; Jiang H; Fang J; Song S
    Environ Sci Technol; 2021 Jul; 55(14):10087-10096. PubMed ID: 34196544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygenated functional group-driven spontaneous fabrication of Pd nanoparticles decorated porous carbon nanosheets for electrocatalytic hydrodechlorination of 4-chlorophenol.
    Wang Q; Zhou L; Chen Q; Mao M; Jiang W; Long Y; Fan G
    J Hazard Mater; 2021 Apr; 408():124456. PubMed ID: 33223316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts.
    Han B; Liu W; Li J; Wang J; Zhao D; Xu R; Lin Z
    Water Res; 2017 Sep; 120():199-210. PubMed ID: 28494246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H*
    Liu LY; Cui MH; Ambuchi JJ; Niu SM; Li XH; Wang WL; Liu H; Liu GS; Wang AJ
    Environ Res; 2024 Jul; 252(Pt 1):118859. PubMed ID: 38574986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TiO
    Zhao Z; Yu L; Zheng L; Guo T; Lv Z; Song S; Zheng H
    J Hazard Mater; 2022 Aug; 435():128998. PubMed ID: 35487007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of the Synergistic Rectifying Interfaces in Mott-Schottky Catalysts.
    Xu D; Zhang SN; Chen JS; Li XH
    Chem Rev; 2023 Jan; 123(1):1-30. PubMed ID: 36342422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface engineering Ni/Ni
    Yang Z; Xie X; Wei J; Zhang Z; Yu C; Dong S; Chen B; Wang Y; Xiang M; Qin H
    J Colloid Interface Sci; 2023 Jul; 642():439-446. PubMed ID: 37023515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium nanoparticles.
    Zhang M; Bacik DB; Roberts CB; Zhao D
    Water Res; 2013 Jul; 47(11):3706-15. PubMed ID: 23726707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Catalytic hydrodechlorination of 2,4-dichlorophenol over Pd/TiO2].
    Zhang Y; Shao Y; Chen H; Wan HQ; Wan YQ; Zheng SR
    Huan Jing Ke Xue; 2012 Jan; 33(1):88-93. PubMed ID: 22452194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activating Cobalt Nanoparticles via the Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters.
    Su H; Zhang KX; Zhang B; Wang HH; Yu QY; Li XH; Antonietti M; Chen JS
    J Am Chem Soc; 2017 Jan; 139(2):811-818. PubMed ID: 28006898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Electronic Effects in Co@N-Doped Carbon Shells Heterojunction Catalyst for Semi-Hydrogenation of Phenylacetylene.
    Huang Y; Yan H; Zhang C; Wang Y; Wei Q; Zhang R
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing an Integrated Flow Cathode-Membrane Filtration System for Effective and Continuous Electrochemical Hydrodechlorination.
    Sun J; Garg S; Waite TD
    Environ Sci Technol; 2024 Jul; 58(29):13131-13144. PubMed ID: 38986049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.