These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31875013)
1. The effect of unsteady streamflow and stream-groundwater interactions on oxygen consumption in a sandy streambed. Galloway J; Fox A; Lewandowski J; Arnon S Sci Rep; 2019 Dec; 9(1):19735. PubMed ID: 31875013 [TBL] [Abstract][Full Text] [Related]
2. Streambed microbial communities in the transition zone between groundwater and a first-order stream as impacted by bidirectional water exchange. Wang Z; Jimenez-Fernandez O; Osenbrück K; Schwientek M; Schloter M; Fleckenstein JH; Lueders T Water Res; 2022 Jun; 217():118334. PubMed ID: 35397370 [TBL] [Abstract][Full Text] [Related]
3. Lateral and longitudinal variation of hyporheic exchange in a piedmont stream pool. Ryan RJ; Boufadel MC Environ Sci Technol; 2007 Jun; 41(12):4221-6. PubMed ID: 17626416 [TBL] [Abstract][Full Text] [Related]
4. Hyporheic transverse mixing zones and dispersivity: Laboratory and numerical experiments of hydraulic controls. Hester ET; Santizo KY; Nida AA; Widdowson MA J Contam Hydrol; 2021 Dec; 243():103885. PubMed ID: 34488177 [TBL] [Abstract][Full Text] [Related]
5. Importance of the vegetation-groundwater-stream continuum to understand transformation of biogenic carbon in aquatic systems - A case study based on a pine-maize comparison in a lowland sandy watershed (Landes de Gascogne, SW France). Deirmendjian L; Anschutz P; Morel C; Mollier A; Augusto L; Loustau D; Cotovicz LC; Buquet D; Lajaunie K; Chaillou G; Voltz B; Charbonnier C; Poirier D; Abril G Sci Total Environ; 2019 Apr; 661():613-629. PubMed ID: 30682612 [TBL] [Abstract][Full Text] [Related]
6. High-Resolution Integrated Transport Model for Studying Surface Water-Groundwater Interaction. Broecker T; Sobhi Gollo V; Fox A; Lewandowski J; Nützmann G; Arnon S; Hinkelmann R Ground Water; 2021 Jul; 59(4):488-502. PubMed ID: 33368208 [TBL] [Abstract][Full Text] [Related]
7. Discharge, Groundwater Gradients, and Streambed Micro-Topography Control the Temporal Dynamics of Transient Storage in a Headwater Reach. Bonanno E; Blöschl G; Klaus J Water Resour Res; 2023 Jul; 59(7):e2022WR034053. PubMed ID: 38440781 [TBL] [Abstract][Full Text] [Related]
8. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession. Malzone JM; Lowry CS Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212 [TBL] [Abstract][Full Text] [Related]
9. Factors influencing streambed hydraulic conductivity and their implications on stream-aquifer interaction: a conceptual review. Naganna SR; Deka PC; Ch S; Hansen WF Environ Sci Pollut Res Int; 2017 Nov; 24(32):24765-24789. PubMed ID: 28988330 [TBL] [Abstract][Full Text] [Related]
10. Variability and comparison of hyporheic water temperatures and seepage fluxes in a small Atlantic salmon stream. Alexander MD; Caissie D Ground Water; 2003; 41(1):72-82. PubMed ID: 12533078 [TBL] [Abstract][Full Text] [Related]
11. Temporal Hyporheic Zone Response to Water Table Fluctuations. Malzone JM; Anseeuw SK; Lowry CS; Allen-King R Ground Water; 2016 Mar; 54(2):274-85. PubMed ID: 26096382 [TBL] [Abstract][Full Text] [Related]
12. Influence of oscillating flow on hyporheic zone development. Maier HS; Howard KW Ground Water; 2011; 49(6):830-44. PubMed ID: 21309768 [TBL] [Abstract][Full Text] [Related]
13. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor. Stern N; Ginder-Vogel M; Stegen JC; Arntzen E; Kennedy DW; Larget BR; Roden EE Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600318 [TBL] [Abstract][Full Text] [Related]
14. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Palmer MA; Bely AE; Berg KE Oecologia; 1992 Feb; 89(2):182-194. PubMed ID: 28312872 [TBL] [Abstract][Full Text] [Related]
15. Quantification of long-term wastewater fluxes at the surface water/groundwater-interface: an integrative model perspective using stable isotopes and acesulfame. Engelhardt I; Barth JA; Bol R; Schulz M; Ternes TA; Schüth C; van Geldern R Sci Total Environ; 2014 Jan; 466-467():16-25. PubMed ID: 23892019 [TBL] [Abstract][Full Text] [Related]
16. How does subsurface characterization affect simulations of hyporheic exchange? Ward AS; Gooseff MN; Singha K Ground Water; 2013; 51(1):14-28. PubMed ID: 22289021 [TBL] [Abstract][Full Text] [Related]
17. Global separation of plant transpiration from groundwater and streamflow. Evaristo J; Jasechko S; McDonnell JJ Nature; 2015 Sep; 525(7567):91-4. PubMed ID: 26333467 [TBL] [Abstract][Full Text] [Related]
18. Human impacts on the stream-groundwater exchange zone. Hancock PJ Environ Manage; 2002 Jun; 29(6):763-81. PubMed ID: 11992170 [TBL] [Abstract][Full Text] [Related]
19. Combined Surface-Subsurface Stream Restoration Structures Can Optimize Hyporheic Attenuation of Stream Water Contaminants. Herzog SP; Galloway J; Banks EW; Posselt M; Jaeger A; Portmann A; Sahm R; Kusebauch B; Lewandowski J; Ward AS Environ Sci Technol; 2023 Mar; 57(10):4153-4166. PubMed ID: 36853955 [TBL] [Abstract][Full Text] [Related]
20. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential. Weatherill JJ; Atashgahi S; Schneidewind U; Krause S; Ullah S; Cassidy N; Rivett MO Water Res; 2018 Jan; 128():362-382. PubMed ID: 29126033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]