These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31875339)

  • 1. Accelerating the Generalized Born with Molecular Volume and Solvent Accessible Surface Area Implicit Solvent Model Using Graphics Processing Units.
    Gong X; Chiricotto M; Liu X; Nordquist E; Feig M; Brooks CL; Chen J
    J Comput Chem; 2020 Mar; 41(8):830-838. PubMed ID: 31875339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.
    Lee KH; Chen J
    J Comput Chem; 2017 Jun; 38(16):1332-1341. PubMed ID: 28397268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient implementation of constant pH molecular dynamics on modern graphics processors.
    Arthur EJ; Brooks CL
    J Comput Chem; 2016 Sep; 37(24):2171-80. PubMed ID: 27405884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU/CPU Algorithm for Generalized Born/Solvent-Accessible Surface Area Implicit Solvent Calculations.
    Tanner DE; Phillips JC; Schulten K
    J Chem Theory Comput; 2012 Jul; 8(7):2521-2530. PubMed ID: 23049488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallelization and improvements of the generalized born model with a simple sWitching function for modern graphics processors.
    Arthur EJ; Brooks CL
    J Comput Chem; 2016 Apr; 37(10):927-39. PubMed ID: 26786647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GPU solvent-solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software.
    Schmid N; Bötschi M; van Gunsteren WF
    J Comput Chem; 2010 Jun; 31(8):1636-43. PubMed ID: 20127715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CUSA and CUDE: GPU-accelerated methods for estimating solvent accessible surface area and desolvation.
    Dynerman D; Butzlaff E; Mitchell JC
    J Comput Biol; 2009 Apr; 16(4):523-37. PubMed ID: 19361325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Pairwise Approximation of Solvent Accessible Surface Area for Implicit Solvent Simulations of Proteins on CPUs and GPUs.
    Huang H; Simmerling C
    J Chem Theory Comput; 2018 Nov; 14(11):5797-5814. PubMed ID: 30303377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating molecular dynamic simulation on graphics processing units.
    Friedrichs MS; Eastman P; Vaidyanathan V; Houston M; Legrand S; Beberg AL; Ensign DL; Bruns CM; Pande VS
    J Comput Chem; 2009 Apr; 30(6):864-72. PubMed ID: 19191337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CHARMM-GUI 10 years for biomolecular modeling and simulation.
    Jo S; Cheng X; Lee J; Kim S; Park SJ; Patel DS; Beaven AH; Lee KI; Rui H; Park S; Lee HS; Roux B; MacKerell AD; Klauda JB; Qi Y; Im W
    J Comput Chem; 2017 Jun; 38(15):1114-1124. PubMed ID: 27862047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of implicit modeling of nonpolar solvation on protein folding simulations.
    Shao Q; Zhu W
    Phys Chem Chem Phys; 2018 Jul; 20(27):18410-18419. PubMed ID: 29946610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the FACTS solvation model for protein-ligand docking calculations. Application to EADock.
    Zoete V; Grosdidier A; Cuendet M; Michielin O
    J Mol Recognit; 2010; 23(5):457-61. PubMed ID: 20101644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p
    Harris RC; Shen J
    J Chem Inf Model; 2019 Nov; 59(11):4821-4832. PubMed ID: 31661616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Chemistry for Solvated Molecules on Graphical Processing Units Using Polarizable Continuum Models.
    Liu F; Luehr N; Kulik HJ; Martínez TJ
    J Chem Theory Comput; 2015 Jul; 11(7):3131-44. PubMed ID: 26575750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations.
    Lee MS; Olson MA
    J Chem Phys; 2013 Jul; 139(4):044119. PubMed ID: 23901972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
    Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P
    J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CHARMM-GUI Implicit Solvent Modeler for Various Generalized Born Models in Different Simulation Programs.
    Wang KW; Lee J; Zhang H; Suh D; Im W
    J Phys Chem B; 2022 Sep; 126(38):7354-7364. PubMed ID: 36117287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome.
    Olson MA
    Front Mol Biosci; 2017; 4():3. PubMed ID: 28197405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.