These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31875671)

  • 1. Self-Assembly of Carbon Black/AAO Templates on Nanoporous Si for Broadband Infrared Absorption.
    Li H; Wu L; Zhang H; Dai W; Hao J; Wu H; Ren F; Liu C
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4081-4087. PubMed ID: 31875671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-Silicon Ultra-Broadband Infrared Light Absorbers.
    Gorgulu K; Gok A; Yilmaz M; Topalli K; Bıyıklı N; Okyay AK
    Sci Rep; 2016 Dec; 6():38589. PubMed ID: 27924933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers.
    Anguita JV; Ahmad M; Haq S; Allam J; Silva SR
    Sci Adv; 2016 Feb; 2(2):e1501238. PubMed ID: 26933686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.
    Tagliabue G; Eghlidi H; Poulikakos D
    Sci Rep; 2014 Nov; 4():7181. PubMed ID: 25418040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin layer broadband porous chromium black absorber fabricated through wet-etching process.
    Zhou L; Li Z; Zhang J; Li D; Liu D; Li Y; Wang X
    RSC Adv; 2019 May; 9(26):14649-14656. PubMed ID: 35516328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Area and Broadband Thermoelectric Infrared Detection in a Carbon Nanotube Black-Body Absorber.
    Zhang M; Ban D; Xu C; Yeow JTW
    ACS Nano; 2019 Nov; 13(11):13285-13292. PubMed ID: 31715095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films.
    Kocer H; Butun S; Palacios E; Liu Z; Tongay S; Fu D; Wang K; Wu J; Aydin K
    Sci Rep; 2015 Aug; 5():13384. PubMed ID: 26294085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane.
    Dayal G; Ramakrishna SA
    Opt Express; 2014 Jun; 22(12):15104-10. PubMed ID: 24977603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application.
    Morawiec S; Holovský J; Mendes MJ; Müller M; Ganzerová K; Vetushka A; Ledinský M; Priolo F; Fejfar A; Crupi I
    Sci Rep; 2016 Mar; 6():22481. PubMed ID: 26935322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mounted nanoporous anodic alumina thin films as planar optical waveguides.
    Lazzara TD; Lau KH; Knoll W
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4293-9. PubMed ID: 21128414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material.
    Lu SB; Miao LL; Guo ZN; Qi X; Zhao CJ; Zhang H; Wen SC; Tang DY; Fan DY
    Opt Express; 2015 May; 23(9):11183-94. PubMed ID: 25969214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films.
    Liu Z; Liu H; Wang X; Yang H; Gao J
    Sci Rep; 2017 Feb; 7():42750. PubMed ID: 28202899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super broadband mid-infrared absorbers with ultrathin folded highly-lossy films.
    Zhang H; Wu H; Li X; Hao J; Li Q; Guan Z; Xu H; Liu C
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):254-262. PubMed ID: 36155920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.