BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

666 related articles for article (PubMed ID: 31875970)

  • 1. Identification of Four Immune Subtypes Characterized by Distinct Composition and Functions of Tumor Microenvironment in Intrahepatic Cholangiocarcinoma.
    Job S; Rapoud D; Dos Santos A; Gonzalez P; Desterke C; Pascal G; Elarouci N; Ayadi M; Adam R; Azoulay D; Castaing D; Vibert E; Cherqui D; Samuel D; Sa Cuhna A; Marchio A; Pineau P; Guettier C; de Reyniès A; Faivre J
    Hepatology; 2020 Sep; 72(3):965-981. PubMed ID: 31875970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-regulation of fas ligand at early stages and down-regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance.
    Shimonishi T; Isse K; Shibata F; Aburatani I; Tsuneyama K; Sabit H; Harada K; Miyazaki K; Nakanuma Y
    Hepatology; 2000 Oct; 32(4 Pt 1):761-9. PubMed ID: 11003620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein-Barr virus-associated intrahepatic cholangiocarcinoma.
    Huang YH; Zhang CZ; Huang QS; Yeong J; Wang F; Yang X; He YF; Zhang XL; Zhang H; Chen SL; Zheng YL; Deng R; Lin CS; Yang MM; Li Y; Jiang C; Kin-Wah Lee T; Ma S; Zeng MS; Yun JP
    J Hepatol; 2021 Apr; 74(4):838-849. PubMed ID: 33212090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenesis and classification of intrahepatic cholangiocarcinoma: different characters of perihilar large duct type versus peripheral small duct type.
    Aishima S; Oda Y
    J Hepatobiliary Pancreat Sci; 2015 Feb; 22(2):94-100. PubMed ID: 25181580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrahepatic cholangiocarcinoma: new insights in pathology.
    Sempoux C; Jibara G; Ward SC; Fan C; Qin L; Roayaie S; Fiel MI; Schwartz M; Thung SN
    Semin Liver Dis; 2011 Feb; 31(1):49-60. PubMed ID: 21344350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma.
    Montal R; Sia D; Montironi C; Leow WQ; Esteban-Fabró R; Pinyol R; Torres-Martin M; Bassaganyas L; Moeini A; Peix J; Cabellos L; Maeda M; Villacorta-Martin C; Tabrizian P; Rodriguez-Carunchio L; Castellano G; Sempoux C; Minguez B; Pawlik TM; Labgaa I; Roberts LR; Sole M; Fiel MI; Thung S; Fuster J; Roayaie S; Villanueva A; Schwartz M; Llovet JM
    J Hepatol; 2020 Aug; 73(2):315-327. PubMed ID: 32173382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiomic Analysis Reveals Comprehensive Tumor Heterogeneity and Distinct Immune Subtypes in Multifocal Intrahepatic Cholangiocarcinoma.
    Chen S; Xie Y; Cai Y; Hu H; He M; Liu L; Liao C; Wang Y; Wang J; Ren X; Zeng Q; Peng H; Shen S; Li S; Li D; Lai J; Peng B; Ren J; Kuang M; Peng S
    Clin Cancer Res; 2022 May; 28(9):1896-1910. PubMed ID: 34526363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct Clinicopathologic and Genetic Features of 2 Histologic Subtypes of Intrahepatic Cholangiocarcinoma.
    Hayashi A; Misumi K; Shibahara J; Arita J; Sakamoto Y; Hasegawa K; Kokudo N; Fukayama M
    Am J Surg Pathol; 2016 Aug; 40(8):1021-30. PubMed ID: 27259014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes.
    Sia D; Hoshida Y; Villanueva A; Roayaie S; Ferrer J; Tabak B; Peix J; Sole M; Tovar V; Alsinet C; Cornella H; Klotzle B; Fan JB; Cotsoglou C; Thung SN; Fuster J; Waxman S; Garcia-Valdecasas JC; Bruix J; Schwartz ME; Beroukhim R; Mazzaferro V; Llovet JM
    Gastroenterology; 2013 Apr; 144(4):829-40. PubMed ID: 23295441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes.
    Xue R; Chen L; Zhang C; Fujita M; Li R; Yan SM; Ong CK; Liao X; Gao Q; Sasagawa S; Li Y; Wang J; Guo H; Huang QT; Zhong Q; Tan J; Qi L; Gong W; Hong Z; Li M; Zhao J; Peng T; Lu Y; Lim KHT; Boot A; Ono A; Chayama K; Zhang Z; Rozen SG; Teh BT; Wang XW; Nakagawa H; Zeng MS; Bai F; Zhang N
    Cancer Cell; 2019 Jun; 35(6):932-947.e8. PubMed ID: 31130341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy-related gene expression classification defines three molecular subtypes with distinct clinical and microenvironment cell infiltration characteristics in colon cancer.
    Zhu S; Wu Q; Zhang B; Wei H; Li B; Shi W; Fang M; Zhu S; Wang L; Lang Zhou Y; Dong Y
    Int Immunopharmacol; 2020 Oct; 87():106757. PubMed ID: 32769067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative analyses identify CD73 as a prognostic biomarker and immunotherapeutic target in intrahepatic cholangiocarcinoma.
    Sun BY; Yang ZF; Wang ZT; Liu G; Zhou C; Zhou J; Fan J; Gan W; Yi Y; Qiu SJ
    World J Surg Oncol; 2023 Mar; 21(1):90. PubMed ID: 36899373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune-related RNA signature predicts outcome of PD-1 inhibitor-combined GEMCIS therapy in advanced intrahepatic cholangiocarcinoma.
    Zeng TM; Pan YF; Yuan ZG; Chen DS; Song YJ; Gao Y
    Front Immunol; 2022; 13():943066. PubMed ID: 36159865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of MUC1 and MUC2 mucin antigens in intrahepatic bile duct tumors: its relationship with a new morphological classification of cholangiocarcinoma.
    Higashi M; Yonezawa S; Ho JJ; Tanaka S; Irimura T; Kim YS; Sato E
    Hepatology; 1999 Dec; 30(6):1347-55. PubMed ID: 10573510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TLR2 promotes human intrahepatic cholangiocarcinoma cell migration and invasion by modulating NF-κB pathway-mediated inflammatory responses.
    Liu B; Yan S; Jia Y; Ma J; Wu S; Xu Y; Shang M; Mao A
    FEBS J; 2016 Oct; 283(20):3839-3850. PubMed ID: 27616304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-Sectional Imaging of Intrahepatic Cholangiocarcinoma: Development, Growth, Spread, and Prognosis.
    Seo N; Kim DY; Choi JY
    AJR Am J Roentgenol; 2017 Aug; 209(2):W64-W75. PubMed ID: 28570102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications.
    Martin-Serrano MA; Kepecs B; Torres-Martin M; Bramel ER; Haber PK; Merritt E; Rialdi A; Param NJ; Maeda M; Lindblad KE; Carter JK; Barcena-Varela M; Mazzaferro V; Schwartz M; Affo S; Schwabe RF; Villanueva A; Guccione E; Friedman SL; Lujambio A; Tocheva A; Llovet JM; Thung SN; Tsankov AM; Sia D
    Gut; 2023 Apr; 72(4):736-748. PubMed ID: 35584893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HHLA2 in intrahepatic cholangiocarcinoma: an immune checkpoint with prognostic significance and wider expression compared with PD-L1.
    Jing CY; Fu YP; Yi Y; Zhang MX; Zheng SS; Huang JL; Gan W; Xu X; Lin JJ; Zhang J; Qiu SJ; Zhang BH
    J Immunother Cancer; 2019 Mar; 7(1):77. PubMed ID: 30885276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma.
    Zhang M; Yang H; Wan L; Wang Z; Wang H; Ge C; Liu Y; Hao Y; Zhang D; Shi G; Gong Y; Ni Y; Wang C; Zhang Y; Xi J; Wang S; Shi L; Zhang L; Yue W; Pei X; Liu B; Yan X
    J Hepatol; 2020 Nov; 73(5):1118-1130. PubMed ID: 32505533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase.
    Lin Y; Cai Q; Chen Y; Shi T; Liu W; Mao L; Deng B; Ying Z; Gao Y; Luo H; Yang X; Huang X; Shi Y; He R
    Hepatology; 2022 Jan; 75(1):28-42. PubMed ID: 34387870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.