These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31876020)

  • 1. Morphology and evolution of the snake cornea.
    Da Silva MO; Gade JT; Damsgaard C; Wang T; Heegaard S; Bertelsen MF
    J Morphol; 2020 Feb; 281(2):240-249. PubMed ID: 31876020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology of the snake spectacle reflects its evolutionary adaptation and development.
    Da Silva MO; Heegaard S; Wang T; Gade JT; Damsgaard C; Bertelsen MF
    BMC Vet Res; 2017 Aug; 13(1):258. PubMed ID: 28821248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning laser ophthalmoscopy and optical coherence tomography imaging of spectacular ecdysis in the corn snake (Pantherophis guttatus) and the California king snake (Lampropeltis getulus californiae).
    Cazalot G; Rival F; Linsart A; Isard PF; Tissier M; Peiffer RL; Dulaurent T
    Vet Ophthalmol; 2015 Jan; 18 Suppl 1():8-14. PubMed ID: 24787982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye size variation reflects habitat and daily activity patterns in colubrid snakes.
    Liu Y; Ding L; Lei J; Zhao E; Tang Y
    J Morphol; 2012 Aug; 273(8):883-93. PubMed ID: 22549850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of corneal and limbal epithelial thickness by anterior segment optical coherence tomography and in vivo confocal microscopy.
    Le Q; Chen Y; Yang Y; Xu J
    BMC Ophthalmol; 2016 Sep; 16(1):163. PubMed ID: 27645227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ophthalmic measurements obtained via high-frequency ultrasound imaging in four species of snakes.
    Hollingsworth SR; Holmberg BJ; Strunk A; Oakley AD; Sickafoose LM; Kass PH
    Am J Vet Res; 2007 Oct; 68(10):1111-4. PubMed ID: 17916019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral domain optical coherence tomography imaging of spectacular ecdysis in the royal python (Python regius).
    Tusler CA; Maggs DJ; Kass PH; Paul-Murphy JR; Schwab IR; Murphy CJ
    Vet Ophthalmol; 2015 Jan; 18 Suppl 1():1-7. PubMed ID: 24824651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound imaging of the anterior section of the eye of five different snake species.
    Lauridsen H; Da Silva MA; Hansen K; Jensen HM; Warming M; Wang T; Pedersen M
    BMC Vet Res; 2014 Dec; 10():313. PubMed ID: 25547871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity, natural history, and geographic distribution of snakes in the Caatinga, Northeastern Brazil.
    Guedes TB; Nogueira C; Marques OA
    Zootaxa; 2014 Sep; 3863():1-93. PubMed ID: 25283535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of corneal thickness in patients with dry eye disease using the Pentacam rotating Scheimpflug camera and anterior segment optical coherence tomography.
    Fujimoto K; Inomata T; Okumura Y; Iwata N; Fujio K; Eguchi A; Nagino K; Shokirova H; Karasawa M; Murakami A
    PLoS One; 2020; 15(2):e0228567. PubMed ID: 32012201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal corneal thickness measurements in pigmented rabbits using spectral-domain anterior segment optical coherence tomography.
    Wang X; Wu Q
    Vet Ophthalmol; 2013 Mar; 16(2):130-4. PubMed ID: 22672083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine invasions by non-sea snakes, with thoughts on terrestrial-aquatic-marine transitions.
    Murphy JC
    Integr Comp Biol; 2012 Aug; 52(2):217-26. PubMed ID: 22576813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-history adaptations to arboreality in snakes.
    Pizzatto L; Almeida-Santos SM; Shine R
    Ecology; 2007 Feb; 88(2):359-66. PubMed ID: 17479754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny, ecology, and heart position in snakes.
    Gartner GE; Hicks JW; Manzani PR; Andrade DV; Abe AS; Wang T; Secor SM; Garland T
    Physiol Biochem Zool; 2010; 83(1):43-54. PubMed ID: 19968564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal thickness and volume measurements by swept source anterior segment optical coherence tomography in normal subjects.
    Fukuda R; Usui T; Miyai T; Mori Y; Miyata K; Amano S
    Curr Eye Res; 2013 May; 38(5):531-6. PubMed ID: 23448300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a new method for the measurement of corneal thickness in eye bank posterior corneal lenticules using Anterior Segment Optical Coherence Tomography.
    Amato D; Lombardo M; Oddone F; Nubile M; Colabelli Gisoldi RA; Villani CM; Yoo S; Parel JM; Pocobelli A
    Br J Ophthalmol; 2011 Apr; 95(4):580-4. PubMed ID: 21113073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravity and the evolution of cardiopulmonary morphology in snakes.
    Lillywhite HB; Albert JS; Sheehy CM; Seymour RS
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Feb; 161(2):230-42. PubMed ID: 22079804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diurnal variation of corneal shape and thickness.
    Read SA; Collins MJ
    Optom Vis Sci; 2009 Mar; 86(3):170-80. PubMed ID: 19182699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative morphology of the snake spectacle using light and transmission electron microscopy.
    Da Silva MA; Bertelsen MF; Wang T; Prause JU; Svahn T; Heegaard S
    Vet Ophthalmol; 2016 Jul; 19(4):285-90. PubMed ID: 25981306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructure and wear patterns of the ventral epidermis of four snake species (Squamata, Serpentes).
    Klein MC; Gorb SN
    Zoology (Jena); 2014 Oct; 117(5):295-314. PubMed ID: 25169958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.