BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31876096)

  • 1. Positioning and stiffening of an articulated/continuum manipulator for implant delivery in minimally invasive surgery.
    Tamadon I; Huan Y; de Groot AG; Menciassi A; Sinibaldi E
    Int J Med Robot; 2020 Apr; 16(2):e2072. PubMed ID: 31876096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of long-term stability of monolithic 3D-printed robotic manipulator structures for minimally invasive surgery.
    Krieger YS; Ostler D; Rzepka K; Meining A; Feussner H; Wilhelm D; Lueth TC
    Int J Comput Assist Radiol Surg; 2020 Oct; 15(10):1693-1697. PubMed ID: 32789728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cable-driven distal end-effector mechanism for single-port robotic surgery.
    Wang Y; Cao Q; Zhu X; Wang P
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):301-309. PubMed ID: 33389605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery.
    Jiang S; Chen B; Qi F; Cao Y; Ju F; Bai D; Wang Y
    Int J Med Robot; 2020 Apr; 16(2):e2081. PubMed ID: 31955492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percutaneous implantation of aortic valve prosthesis in patients with calcific aortic stenosis: technical aspects.
    Eltchaninoff H; Tron C; Cribier A
    J Interv Cardiol; 2003 Dec; 16(6):515-21. PubMed ID: 14632949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-assisted aortic valve surgery: State of the art and challenges for the future.
    Balkhy HH; Lewis CTP; Kitahara H
    Int J Med Robot; 2018 Aug; 14(4):e1913. PubMed ID: 29700926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Robotic Approach for Minimally Invasive Aortic Heart Valve Surgery.
    Tamadon I; Soldani G; Dario P; Menciassi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3656-3659. PubMed ID: 30441166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ValveTech: A Novel Robotic Approach for Minimally Invasive Aortic Valve Replacement.
    Tamadon I; Mamone V; Huan Y; Condino S; Quaglia C; Ferrari V; Ferrari M; Menciassi A
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1238-1249. PubMed ID: 32931426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A soft multi-module manipulator with variable stiffness for minimally invasive surgery.
    De Falco I; Cianchetti M; Menciassi A
    Bioinspir Biomim; 2017 Sep; 12(5):056008. PubMed ID: 28675144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioinspired soft manipulator for minimally invasive surgery.
    Ranzani T; Gerboni G; Cianchetti M; Menciassi A
    Bioinspir Biomim; 2015 May; 10(3):035008. PubMed ID: 25970550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transapical transcatheter aortic valve implantation using the JenaValve™ system: acute and 30-day results of the multicentre CE-mark study.
    Treede H; Mohr FW; Baldus S; Rastan A; Ensminger S; Arnold M; Kempfert J; Figulla HR
    Eur J Cardiothorac Surg; 2012 Jun; 41(6):e131-8. PubMed ID: 22508111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current status of surgical treatment for aortic valve stenosis.
    Wollersheim LW; Li WW; de Mol BA
    J Card Surg; 2014 Sep; 29(5):630-7. PubMed ID: 24980691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimally invasive approach for aortic and mitral valve surgery.
    Lio A; Miceli A; Ferrarini M; Glauber M
    Eur J Cardiothorac Surg; 2016 Dec; 50(6):1204-1205. PubMed ID: 27301388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimally invasive aortic valve replacement with a catheter-based cerebral protection system: transferring percutaneous technologies into a surgical intervention.
    Di Eusanio M; Cefarelli M; Berretta P; Capestro F
    Eur J Cardiothorac Surg; 2019 Nov; 56(5):1016-1017. PubMed ID: 31056703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Minimally invasive aortic valve replacement].
    Belov YV; Salagaev GI; Lysenko AV; Lednev PV
    Khirurgiia (Mosk); 2017; (12):66-69. PubMed ID: 29286033
    [No Abstract]   [Full Text] [Related]  

  • 16. Minimally Invasive Redo Mitral Valve Replacement Using a Robotic-Assisted Approach.
    Patel H; Lewis CTP; Stephens RL; Angelillo M; Sibley DH
    Innovations (Phila); 2017; 12(5):375-377. PubMed ID: 29023349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimally invasive cardiac surgery: a safe alternative for aortic valve replacement?
    Rojas SV; Haverich A
    Rev Esp Cardiol (Engl Ed); 2013 Sep; 66(9):685-6. PubMed ID: 24773671
    [No Abstract]   [Full Text] [Related]  

  • 18. Control of a hybrid robotic system for computer-assisted interventions in dynamic environments.
    Smoljkic G; Borghesan G; Devreker A; Poorten EV; Rosa B; De Praetere H; De Schutter J; Reynaerts D; Sloten JV
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1371-83. PubMed ID: 26662203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimally invasive redo-aortic valve replacement.
    Bonaros N; Özpeker C; Kofler M; Dumfarth J; Holfeld J; Schachner T; Müller L; Grimm M
    Multimed Man Cardiothorac Surg; 2018 Jan; 2018():. PubMed ID: 29485772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the port-access technique really safe as conventional perfusion extracorporeal circulation for all candidates of valve surgery?
    Tedoriya T
    Circ J; 2011; 75(7):1571-2. PubMed ID: 21646724
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.