These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31876182)

  • 1. Sickling-suppressive effects of chrysin may be associated with sequestration of deoxy-haemoglobin, 2,3-bisphosphoglycerate mutase, alteration of redox homeostasis and functional chemistry of sickle erythrocytes.
    Muhammad A; Waziri AD; Forcados GE; Sanusi B; Sani H; Malami I; Abubakar IB; Muhammad A; Muhammad RA; Mohammed HA
    Hum Exp Toxicol; 2020 Apr; 39(4):537-546. PubMed ID: 31876182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisickling effect of chrysin is associated with modulation of oxygenated and deoxygenated haemoglobin via alteration of functional chemistry and metabolic pathways of human sickle erythrocytes.
    Nwankwo HC; Idowu AA; Muhammad A; Waziri AD; Abubakar YS; Bashir M; Erukainure OL
    Hum Exp Toxicol; 2021 Dec; 40(12_suppl):S108-S124. PubMed ID: 34151613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sickling-preventive effects of rutin is associated with modulation of deoxygenated haemoglobin, 2,3-bisphosphoglycerate mutase, redox status and alteration of functional chemistry in sickle erythrocytes.
    Muhammad A; Waziri AD; Forcados GE; Sanusi B; Sani H; Malami I; Abubakar IB; Oluwatoyin HY; Adinoyi OA; Mohammed HA
    Heliyon; 2019 Jun; 5(6):e01905. PubMed ID: 31297461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodora myristica (African nutmeg) modulates redox homeostasis and alters functional chemistry in sickled erythrocytes.
    Erukainure OL; Ajiboye JA; Abbah UA; Asieba GO; Mamuru S; Zaruwa MZ; Manhas N; Singh P; Islam MS
    Hum Exp Toxicol; 2018 May; 37(5):458-467. PubMed ID: 28565971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro effects of anthocyanin extracts from Justicia secunda Vahl on the solubility of haemoglobin S and membrane stability of sickle erythrocytes.
    Mpiana PT; Ngbolua KN; Bokota MT; Kasonga TK; Atibu EK; Tshibangu DS; Mudogo V
    Blood Transfus; 2010 Oct; 8(4):248-54. PubMed ID: 20967165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo?
    Oder E; Safo MK; Abdulmalik O; Kato GJ
    Br J Haematol; 2016 Oct; 175(1):24-30. PubMed ID: 27605087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underutilized legumes, Cajanus cajan and Glycine max may bring about antisickling effect in sickle cell disease by modulation of redox homeostasis in sickled erythrocytes and alteration of its functional chemistry.
    Elemo GN; Erukainure OL; Okafor JNC; Banerjee P; Preissner R; Nwachukwu Nicholas-Okpara VA; Atolani O; Omowunmi O; Ezeanyanaso CS; Awosika A; Shode F
    J Food Biochem; 2022 Sep; 46(9):e14322. PubMed ID: 35894096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, Synthesis, and Biological Evaluation of Ester and Ether Derivatives of Antisickling Agent 5-HMF for the Treatment of Sickle Cell Disease.
    Xu GG; Pagare PP; Ghatge MS; Safo RP; Gazi A; Chen Q; David T; Alabbas AB; Musayev FN; Venitz J; Zhang Y; Safo MK; Abdulmalik O
    Mol Pharm; 2017 Oct; 14(10):3499-3511. PubMed ID: 28858508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assessment of the anti-sickling properties of Buchholzia coriacea and Mucuna pruriens seed extracts.
    Ikechukwu EL; Okafor PN; Egba SI
    In Vitro Cell Dev Biol Anim; 2020 Oct; 56(9):773-782. PubMed ID: 33025340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease.
    Oksenberg D; Dufu K; Patel MP; Chuang C; Li Z; Xu Q; Silva-Garcia A; Zhou C; Hutchaleelaha A; Patskovska L; Patskovsky Y; Almo SC; Sinha U; Metcalf BW; Archer DR
    Br J Haematol; 2016 Oct; 175(1):141-53. PubMed ID: 27378309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Triazole Disulfide Compound Increases the Affinity of Hemoglobin for Oxygen and Reduces the Sickling of Human Sickle Cells.
    Nakagawa A; Ferrari M; Schleifer G; Cooper MK; Liu C; Yu B; Berra L; Klings ES; Safo RS; Chen Q; Musayev FN; Safo MK; Abdulmalik O; Bloch DB; Zapol WM
    Mol Pharm; 2018 May; 15(5):1954-1963. PubMed ID: 29634905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro effects of NIPRISAN (Nix-0699): a naturally occurring, potent antisickling agent.
    Iyamu EW; Turner EA; Asakura T
    Br J Haematol; 2002 Jul; 118(1):337-43. PubMed ID: 12100171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects.
    Kassa T; Strader MB; Nakagawa A; Zapol WM; Alayash AI
    Metallomics; 2017 Sep; 9(9):1260-1270. PubMed ID: 28770911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of sickle cell disease by increasing oxygen affinity of hemoglobin.
    Henry ER; Metaferia B; Li Q; Harper J; Best RB; Glass KE; Cellmer T; Dunkelberger EB; Conrey A; Thein SL; Bunn HF; Eaton WA
    Blood; 2021 Sep; 138(13):1172-1181. PubMed ID: 34197597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of ovarian steroids to erythrocytes in patients with sickle cell disease; effects on cell sickling and osmotic fragility.
    Yoong WC; Tuck SM; Michael AE
    J Steroid Biochem Mol Biol; 2003 Jan; 84(1):71-8. PubMed ID: 12648526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells.
    Abdulmalik O; Safo MK; Chen Q; Yang J; Brugnara C; Ohene-Frempong K; Abraham DJ; Asakura T
    Br J Haematol; 2005 Feb; 128(4):552-61. PubMed ID: 15686467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies.
    Lu L; Li Z; Li H; Li X; Vekilov PG; Karniadakis GE
    Sci Adv; 2019 Aug; 5(8):eaax3905. PubMed ID: 31457104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of an Anti-Sickling Drug with Hemoglobin in Red Blood Cells from a Patient with Sickle Cell Anemia.
    Strader MB; Liang H; Meng F; Harper J; Ostrowski DA; Henry ER; Shet AS; Eaton WA; Thein SL; Alayash AI
    Bioconjug Chem; 2019 Mar; 30(3):568-571. PubMed ID: 30794381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. t-BOOH-induced oxidative damage in sickle red blood cells and the role of flavonoids.
    Cesquini M; Torsoni MA; Stoppa GR; Ogo SH
    Biomed Pharmacother; 2003; 57(3-4):124-9. PubMed ID: 12818473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Investigation of Structure-Activity Relationships of Azolylacryloyl Derivatives Yielded Potent and Long-Acting Hemoglobin Modulators for Reversing Erythrocyte Sickling.
    Omar AM; Abdulmalik O; Ghatge MS; Muhammad YA; Paredes SD; El-Araby ME; Safo MK
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33147875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.