These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31876408)

  • 1. Quantitative Surface-Enhanced Raman Spectroscopy Analysis through 3D Superlattice Arrays of Au Nanoframes with Attomolar Detection.
    Kim D; Lee J; Yoo S; Choi S; Park D; Park S
    Anal Chem; 2020 Jan; 92(2):1972-1977. PubMed ID: 31876408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A close-packed 3D plasmonic superlattice of truncated octahedral gold nanoframes.
    Yoon J; Jang HJ; Jung I; Park S
    Nanoscale; 2017 Jun; 9(23):7708-7713. PubMed ID: 28561118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Single-Particle Surface-Enhanced Raman Scattering Study of Plasmonic Tripod Nanoframes with Y-Shaped Hot-Zones.
    Kim J; Yoo S; Kim JM; Choi S; Kim J; Park SJ; Park D; Nam JM; Park S
    Nano Lett; 2020 Jun; 20(6):4362-4369. PubMed ID: 32364741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-Hot-Spot Bulk Surface-Enhanced Raman Scattering (SERS) Substrates: Attomolar Detection of Adsorbates with Designer Plasmonic Nanoparticles.
    Zhao Q; Hilal H; Kim J; Park W; Haddadnezhad M; Lee J; Park W; Lee JW; Lee S; Jung I; Park S
    J Am Chem Soc; 2022 Jul; 144(29):13285-13293. PubMed ID: 35839479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Dodecahedral-Walled Elongated Nanoframes for Surface-Enhanced Raman Spectroscopy.
    Hilal H; Haddadnezhad M; Oh MJ; Jung I; Park S
    Small; 2024 Jan; 20(3):e2304567. PubMed ID: 37688300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octahedron in a Cubic Nanoframe: Strong Near-Field Focusing and Surface-Enhanced Raman Scattering.
    Oh MJ; Kwon S; Lee S; Jung I; Park S
    ACS Nano; 2024 Mar; 18(10):7656-7665. PubMed ID: 38416014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold Nanoframes by Nonepitaxial Growth of Au on AgI Nanocrystals for Surface-Enhanced Raman Spectroscopy.
    Zhang L; Liu T; Liu K; Han L; Yin Y; Gao C
    Nano Lett; 2015 Jul; 15(7):4448-54. PubMed ID: 26079857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional nanoframes with dual rims as nanoprobes for biosensing.
    Hilal H; Zhao Q; Kim J; Lee S; Haddadnezhad M; Yoo S; Lee S; Park W; Park W; Lee J; Lee JW; Jung I; Park S
    Nat Commun; 2022 Aug; 13(1):4813. PubMed ID: 35974015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic All-Frame-Faceted Octahedral Nanoframes with Eight Engraved Y-Shaped Hot Zones.
    Kim J; Hilal H; Haddadnezhad M; Lee J; Park W; Park W; Lee JW; Jung I; Park S
    ACS Nano; 2022 Jun; 16(6):9214-9221. PubMed ID: 35446559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Location of 3D Hot Spots in Gold Nanoparticle Films Using Surface-Enhanced Raman Spectroscopy.
    Zhang YJ; Chen S; Radjenovic P; Bodappa N; Zhang H; Yang ZL; Tian ZQ; Li JF
    Anal Chem; 2019 Apr; 91(8):5316-5322. PubMed ID: 30912431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al
    Yang C; Chen Y; Liu D; Chen C; Wang J; Fan Y; Huang S; Lei W
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8317-8323. PubMed ID: 29441776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Pot Self-Templated Growth of Gold Nanoframes for Enhanced Surface-Enhanced Raman Scattering Performance.
    Ye P; Xin W; De Rosa IM; Wang Y; Goorsky MS; Zheng L; Yin X; Xie YH
    ACS Appl Mater Interfaces; 2020 May; 12(19):22050-22057. PubMed ID: 32266808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous synthesis and assembly of silver nanoparticles to three-demensional superstructures for sensitive surface-enhanced Raman spectroscopy detection.
    Yang Y; Wang W; Chen T; Chen ZR
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21468-73. PubMed ID: 25349991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Template-Confined Site-Specific Electrodeposition of Nanoparticle Cluster-in-Bowl Arrays as Surface Enhanced Raman Spectroscopy Substrates.
    Wang Y; Yu Y; Liu Y; Yang S
    ACS Sens; 2018 Nov; 3(11):2343-2350. PubMed ID: 30350595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Double-Walled Nanoframes with Face-to-Face Nanogaps for Strong SERS Activity.
    Haddadnezhad M; Jung I; Park W; Lee JW; Park W; Kim J; Park S
    Nano Lett; 2023 Aug; 23(15):6831-6838. PubMed ID: 37083287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Polycrystalline Ice for Assembly of Large Area Au Nanoparticle Superstructures as SERS Substrates.
    Bekana D; Liu R; Amde M; Liu JF
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):513-520. PubMed ID: 27984854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending Surface-Enhanced Raman Spectroscopy to Liquids Using Shell-Isolated Plasmonic Superstructures.
    Wondergem CS; van Swieten TP; Geitenbeek RG; Erné BH; Weckhuysen BM
    Chemistry; 2019 Dec; 25(69):15772-15778. PubMed ID: 31478273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanobipyramid-embedded ultrathin metal nanoframes for
    Zhu X; Xu J; Zhang H; Cui X; Guo Y; Cheng S; Kan C; Wang J
    Chem Sci; 2020 Feb; 11(12):3198-3207. PubMed ID: 34122825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.