BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31876952)

  • 1. A porcine model for studying the cardiovascular consequences of high-thoracic spinal cord injury.
    West CR; Poormasjedi-Meibod MS; Manouchehri N; Williams AM; Erskine EL; Webster M; Fisk S; Morrison C; Short K; So K; Cheung A; Streijger F; Kwon BK
    J Physiol; 2020 Mar; 598(5):929-942. PubMed ID: 31876952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survival Model of Thoracic Contusion Spinal Cord Injury in the Domestic Pig.
    Gayen CD; Bessen MA; Dorrian RM; Quarrington RD; Mulaibrahimovic A; Doig RLO; Freeman BJC; Leonard AV; Jones CF
    J Neurotrauma; 2023 May; 40(9-10):965-980. PubMed ID: 36200622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Optical Monitoring of Spinal Cord Oxygenation and Hemodynamics during the First Seven Days Post-Injury in a Porcine Model of Acute Spinal Cord Injury.
    Cheung A; Tu L; Manouchehri N; Kim KT; So K; Webster M; Fisk S; Tigchelaar S; Dalkilic SS; Sayre EC; Streijger F; Macnab A; Kwon BK; Shadgan B
    J Neurotrauma; 2020 Nov; 37(21):2292-2301. PubMed ID: 32689879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between Early Vasopressor Administration and Spinal Cord Hemorrhage in a Porcine Model of Acute Traumatic Spinal Cord Injury.
    Cheung A; Streijger F; So K; Okon EB; Manouchehri N; Shortt K; Kim KT; Keung MSM; Chan RM; Fong A; Sun J; Griesdale DE; Sehkon MS; Kwon BK
    J Neurotrauma; 2020 Aug; 37(15):1696-1707. PubMed ID: 32233727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Pressure, Hemodynamics, and Metabolism within the Spinal Cord during the First 7 Days after Injury Using a Porcine Model.
    Streijger F; So K; Manouchehri N; Tigchelaar S; Lee JHT; Okon EB; Shortt K; Kim SE; McInnes K; Cripton P; Kwon BK
    J Neurotrauma; 2017 Dec; 34(24):3336-3350. PubMed ID: 28844181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Direct Comparison between Norepinephrine and Phenylephrine for Augmenting Spinal Cord Perfusion in a Porcine Model of Spinal Cord Injury.
    Streijger F; So K; Manouchehri N; Gheorghe A; Okon EB; Chan RM; Ng B; Shortt K; Sekhon MS; Griesdale DE; Kwon BK
    J Neurotrauma; 2018 Jun; 35(12):1345-1357. PubMed ID: 29338544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct comparison of cervical and high thoracic spinal cord injury reveals distinct autonomic and cardiovascular consequences.
    Lujan HL; DiCarlo SE
    J Appl Physiol (1985); 2020 Mar; 128(3):554-564. PubMed ID: 31999525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Duraplasty in Traumatic Thoracic Spinal Cord Injury: Impact on Spinal Cord Hemodynamics, Tissue Metabolism, Histology, and Behavioral Recovery Using a Porcine Model.
    Streijger F; Kim KT; So K; Manouchehri N; Shortt K; Okon EB; Morrison C; Fong A; Gupta R; Allard Brown A; Tigchelaar S; Sun J; Liu E; Keung M; Daly CD; Cripton PA; Sekhon MS; Griesdale DE; Kwon BK
    J Neurotrauma; 2021 Nov; 38(21):2937-2955. PubMed ID: 34011164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardio-centric hemodynamic management improves spinal cord oxygenation and mitigates hemorrhage in acute spinal cord injury.
    Williams AM; Manouchehri N; Erskine E; Tauh K; So K; Shortt K; Webster M; Fisk S; Billingsley A; Munro A; Tigchelaar S; Streijger F; Kim KT; Kwon BK; West CR
    Nat Commun; 2020 Oct; 11(1):5209. PubMed ID: 33060602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel porcine model of traumatic thoracic spinal cord injury.
    Lee JH; Jones CF; Okon EB; Anderson L; Tigchelaar S; Kooner P; Godbey T; Chua B; Gray G; Hildebrandt R; Cripton P; Tetzlaff W; Kwon BK
    J Neurotrauma; 2013 Feb; 30(3):142-59. PubMed ID: 23316955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Severity of locomotor and cardiovascular derangements after experimental high-thoracic spinal cord injury is anesthesia dependent in rats.
    Nout YS; Beattie MS; Bresnahan JC
    J Neurotrauma; 2012 Mar; 29(5):990-9. PubMed ID: 21545262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive values of spinal cord diffusion magnetic resonance imaging to characterize outcomes after contusion injury.
    Ahmed RU; Medina-Aguinaga D; Adams S; Knibbe CA; Morgan M; Gibson D; Kim JW; Sharma M; Chopra M; Davison S; Sherwood LC; Negahdar MJ; Bert R; Ugiliweneza B; Hubscher C; Budde MD; Xu J; Boakye M
    Ann Clin Transl Neurol; 2023 Sep; 10(9):1647-1661. PubMed ID: 37501362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Lower Urinary Tract Dysfunction after Thoracic Spinal Cord Injury in Yucatan Minipigs.
    Keung MS; Streijger F; Herrity A; Ethridge J; Dougherty SM; Aslan S; Webster M; Fisk S; Deegan EG; Tessier-Cloutier B; Chen KN; Morrison C; Okon EB; Tigchelaar S; Manouchehri N; Kim KT; Shortt K; So K; Damaser MS; Sherwood LC; Howland DR; Boakye M; Hubscher C; Stothers L; Kavanagh A; Kwon BK
    J Neurotrauma; 2021 May; 38(9):1306-1326. PubMed ID: 33499736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental high thoracic spinal cord injury impairs the cardiac and cerebrovascular response to orthostatic challenge in rats.
    Hayes BD; Fossey MPM; Poormasjedi-Meibod MS; Erskine E; Soriano JE; Scott B; Rosentreter R; Granville DJ; Phillips AA; West CR
    Am J Physiol Heart Circ Physiol; 2021 Oct; 321(4):H716-H727. PubMed ID: 34448635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Thoracic Contusion Model for the Investigation of Cardiovascular Function after Spinal Cord Injury.
    Squair JW; West CR; Popok D; Assinck P; Liu J; Tetzlaff W; Krassioukov AV
    J Neurotrauma; 2017 Feb; 34(3):671-684. PubMed ID: 27456150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of early exercise training on the severity of autonomic dysreflexia following incomplete spinal cord injury in rodents.
    Harman KA; DeVeau KM; Squair JW; West CR; Krassioukov AV; Magnuson DSK
    Physiol Rep; 2021 Aug; 9(15):e14969. PubMed ID: 34337884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maladaptation of renal hemodynamics contributes to kidney dysfunction resulting from thoracic spinal cord injury in mice.
    Osei-Owusu P; Collyer E; Dahlen SA; Adams RE; Tom VJ
    Am J Physiol Renal Physiol; 2022 Aug; 323(2):F120-F140. PubMed ID: 35658716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of early and delayed initiation of exercise training on cardiac and haemodynamic function after spinal cord injury.
    Popok DW; West CR; McCracken L; Krassioukov AV
    Exp Physiol; 2017 Feb; 102(2):154-163. PubMed ID: 28004433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a large-animal model to measure dynamic cerebrospinal fluid pressure during spinal cord injury: Laboratory investigation.
    Jones CF; Lee JH; Kwon BK; Cripton PA
    J Neurosurg Spine; 2012 Jun; 16(6):624-35. PubMed ID: 22519927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meglumine cyclic adenylate improves cardiovascular hemodynamics and motor-function in a rat model of acute T4 thoracic spinal cord injury.
    Song Y; Guo L; Jiang X; Dong M; Xiang D; Wen M; He S; Yuan Y; Lin F; Zhao G; Liu L; Liao J
    Spinal Cord; 2023 Aug; 61(8):422-429. PubMed ID: 37402893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.