These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 31877019)
1. Enhanced Electrical and Mechanical Properties of Chemically Cross-Linked Carbon-Nanotube-Based Fibers and Their Application in High-Performance Supercapacitors. Wang G; Kim SK; Wang MC; Zhai T; Munukutla S; Girolami GS; Sempsrott PJ; Nam S; Braun PV; Lyding JW ACS Nano; 2020 Jan; 14(1):632-639. PubMed ID: 31877019 [TBL] [Abstract][Full Text] [Related]
2. A Wet-Spinning Process for Producing Carbon Nanotube/Polyvinylidene Fluoride Fibers Having Highly Consistent Electrical and Mechanical Properties. Kang KW; Choi CW; Jin JW Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833347 [TBL] [Abstract][Full Text] [Related]
3. Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors. Park H; Ambade RB; Noh SH; Eom W; Koh KH; Ambade SB; Lee WJ; Kim SH; Han TH ACS Appl Mater Interfaces; 2019 Mar; 11(9):9011-9022. PubMed ID: 30653285 [TBL] [Abstract][Full Text] [Related]
4. Millisecond tension-annealing for enhancing carbon nanotube fibers. Song Y; Di J; Zhang C; Zhao J; Zhang Y; Hu D; Li M; Zhang Z; Wei H; Li Q Nanoscale; 2019 Aug; 11(29):13909-13916. PubMed ID: 31304941 [TBL] [Abstract][Full Text] [Related]
5. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. Ma Y; Li P; Sedloff I; Zhang X; Zhang H; Liu J ACS Nano; 2015 Feb; 9(2):1352-9. PubMed ID: 25625807 [TBL] [Abstract][Full Text] [Related]
6. Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties. Tsentalovich DE; Headrick RJ; Mirri F; Hao J; Behabtu N; Young CC; Pasquali M ACS Appl Mater Interfaces; 2017 Oct; 9(41):36189-36198. PubMed ID: 28937741 [TBL] [Abstract][Full Text] [Related]
7. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking. Yu Q; Alvarez NT; Miller P; Malik R; Haase MR; Schulz M; Shanov V; Zhu X Materials (Basel); 2016 Jan; 9(2):. PubMed ID: 28787868 [TBL] [Abstract][Full Text] [Related]
8. Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties. Hossain MM; Islam MA; Shima H; Hasan M; Lee M ACS Appl Mater Interfaces; 2017 Feb; 9(6):5530-5542. PubMed ID: 28106367 [TBL] [Abstract][Full Text] [Related]
9. Enhanced mechanical strength and electrical conductivity of carbon-nanotube/TiC hybrid fibers. Yi Q; Dai X; Zhao J; Sun Y; Lou Y; Su X; Li Q; Sun B; Zheng H; Shen M; Wang Q; Zou G Nanoscale; 2013 Aug; 5(15):6923-7. PubMed ID: 23787809 [TBL] [Abstract][Full Text] [Related]
10. Optimization of Electrical and Mechanical Properties through the Adjustment of Design Parameters in the Wet Spinning Process of Carbon Nanotube/Polyvinylidene Fluoride Fibers Using Response Surface Methodology. Choi CW; Jin JW; Kang KW Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514479 [TBL] [Abstract][Full Text] [Related]
11. High-performance hybrid carbon nanotube fibers for wearable energy storage. Lu Z; Chao Y; Ge Y; Foroughi J; Zhao Y; Wang C; Long H; Wallace GG Nanoscale; 2017 Apr; 9(16):5063-5071. PubMed ID: 28265639 [TBL] [Abstract][Full Text] [Related]
12. Preparation and Properties of Carbon Fiber/Carbon Nanotube Wet-Laid Composites. Lee S; Ko K; Youk J; Lim D; Jeong W Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31574909 [TBL] [Abstract][Full Text] [Related]
13. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Xu G; Zhao J; Li S; Zhang X; Yong Z; Li Q Nanoscale; 2011 Oct; 3(10):4215-9. PubMed ID: 21879118 [TBL] [Abstract][Full Text] [Related]
14. Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing. Zhong XH; Wang R; Wen YY Phys Chem Chem Phys; 2013 Mar; 15(11):3861-5. PubMed ID: 23399977 [TBL] [Abstract][Full Text] [Related]
15. Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers. Lee J; Lee DM; Kim YK; Jeong HS; Kim SM Small; 2017 Oct; 13(38):. PubMed ID: 28786553 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning. Ryu SW; Hwang JW; Hong SH J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627 [TBL] [Abstract][Full Text] [Related]
18. Wet-spinning assembly and in situ electrodeposition of carbon nanotube-based composite fibers for high energy density wire-shaped asymmetric supercapacitor. Ren C; Yan Y; Sun B; Gu B; Chou TW J Colloid Interface Sci; 2020 Jun; 569():298-306. PubMed ID: 32120137 [TBL] [Abstract][Full Text] [Related]
19. Joule Heating-Induced Carbon Fibers for Flexible Fiber Supercapacitor Electrodes. Kang JG; Wang G; Kim SK Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33233822 [TBL] [Abstract][Full Text] [Related]
20. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification. Hill FA; Havel TF; Hart AJ; Livermore C ACS Appl Mater Interfaces; 2013 Aug; 5(15):7198-207. PubMed ID: 23876225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]