BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31877031)

  • 1. Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range.
    Li F; Deng D; Li M
    Environ Sci Technol; 2020 Feb; 54(3):1898-1908. PubMed ID: 31877031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane.
    Li F; Deng D; Zeng L; Abrams S; Li M
    Sci Total Environ; 2021 Jun; 774():145118. PubMed ID: 33610989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.
    Mahendra S; Grostern A; Alvarez-Cohen L
    Chemosphere; 2013 Mar; 91(1):88-92. PubMed ID: 23237300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation Kinetics of 1,4-Dioxane in Chlorinated Solvent Mixtures.
    Zhang S; Gedalanga PB; Mahendra S
    Environ Sci Technol; 2016 Sep; 50(17):9599-607. PubMed ID: 27486928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of an Inducible Toluene Monooxygenase That Cooxidizes 1,4-Dioxane and 1,1-Dichloroethylene in Propanotrophic
    Deng D; Pham DN; Li F; Li M
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula.
    Ramalingam V; Cupples AM
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2255-2269. PubMed ID: 31956944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multicomponent propane monooxygenase catalyzes the initial degradation of methyl
    Chen Y; Ren H; Kong X; Wu H; Lu Z
    Appl Environ Microbiol; 2023 Oct; 89(10):e0118723. PubMed ID: 37823642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria.
    Mahendra S; Alvarez-Cohen L
    Environ Sci Technol; 2006 Sep; 40(17):5435-42. PubMed ID: 16999122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes.
    He Y; Mathieu J; da Silva MLB; Li M; Alvarez PJJ
    Microb Biotechnol; 2018 Jan; 11(1):189-198. PubMed ID: 28984418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane.
    Li M; Mathieu J; Yang Y; Fiorenza S; Deng Y; He Z; Zhou J; Alvarez PJ
    Environ Sci Technol; 2013 Sep; 47(17):9950-8. PubMed ID: 23909410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating promising substrates for promoting 1,4-dioxane biodegradation: effects of ethane and tetrahydrofuran on microbial consortia.
    Xiong Y; Mason OU; Lowe A; Zhang Z; Zhou C; Chen G; Villalonga MJ; Tang Y
    Biodegradation; 2020 Jun; 31(3):171-182. PubMed ID: 32361902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478.
    Masuda H; McClay K; Steffan RJ; Zylstra GJ
    J Mol Microbiol Biotechnol; 2012; 22(5):312-6. PubMed ID: 23147387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the phylotypes involved in cis-dichloroethene and 1,4-dioxane biodegradation in soil microcosms.
    Dang H; Cupples AM
    Sci Total Environ; 2021 Nov; 794():148690. PubMed ID: 34198077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane.
    Adamson DT; Anderson RH; Mahendra S; Newell CJ
    Environ Sci Technol; 2015 Jun; 49(11):6510-8. PubMed ID: 25970261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Synergistic Platform for Continuous Co-removal of 1,1,1-Trichloroethane, Trichloroethene, and 1,4-Dioxane via Catalytic Dechlorination Followed by Biodegradation.
    Luo YH; Long X; Wang B; Zhou C; Tang Y; Krajmalnik-Brown R; Rittmann BE
    Environ Sci Technol; 2021 May; 55(9):6363-6372. PubMed ID: 33881824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Associating potential 1,4-dioxane biodegradation activity with groundwater geochemical parameters at four different contaminated sites.
    da Silva MLB; Woroszylo C; Castillo NF; Adamson DT; Alvarez PJJ
    J Environ Manage; 2018 Jan; 206():60-64. PubMed ID: 29059571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-metabolic biodegradation of chlorinated ethene in an oxygen- and ethane-based membrane biofilm reactor.
    Chi Z; Liu X; Li H; Liang S; Luo YH; Zhou C; Rittmann BE
    Sci Total Environ; 2023 Dec; 905():167323. PubMed ID: 37742949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Kinetic Characteristics of 1,4-Dioxane-Degrading Bacterial Consortia Containing the Phylum TM7.
    Nam JH; Ventura JS; Yeom IT; Lee Y; Jahng D
    J Microbiol Biotechnol; 2016 Nov; 26(11):1951-1964. PubMed ID: 27470275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across microbial communities and their enumeration during 1,4-dioxane biodegradation.
    Eshghdoostkhatami Z; Cupples AM
    J Microbiol Methods; 2024 Apr; 219():106908. PubMed ID: 38403133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cometabolic degradation of 1,4-dioxane by a tetrahydrofuran-growing Arthrobacter sp. WN18.
    Wang P; Li F; Wang W; Wang R; Yang Y; Cui T; Liu N; Li M
    Ecotoxicol Environ Saf; 2021 Jul; 217():112206. PubMed ID: 33866286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.