These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31877247)

  • 1. An Electrically Actuated, Carbon-Nanotube-Based Biomimetic Ion Pump.
    Rabinowitz J; Cohen C; Shepard KL
    Nano Lett; 2020 Feb; 20(2):1148-1153. PubMed ID: 31877247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic sensitivity of a single-walled carbon nanotube to internal electrolyte composition.
    Cao D; Pang P; Liu H; He J; Lindsay SM
    Nanotechnology; 2012 Mar; 23(8):085203. PubMed ID: 22293518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial light-driven ion pump for photoelectric energy conversion.
    Xiao K; Chen L; Chen R; Heil T; Lemus SDC; Fan F; Wen L; Jiang L; Antonietti M
    Nat Commun; 2019 Jan; 10(1):74. PubMed ID: 30622279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Artificial Ion Pumps.
    Mei T; Zhang H; Xiao K
    ACS Nano; 2022 Sep; 16(9):13323-13338. PubMed ID: 36036646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Heterogeneous Ion Pump Membranes: Unidirectional Selective Pumping and Controllable Gating Properties Stemming from Asymmetric Ionic Group Distribution.
    Zhang Z; Li P; Kong XY; Xie G; Qian Y; Wang Z; Tian Y; Wen L; Jiang L
    J Am Chem Soc; 2018 Jan; 140(3):1083-1090. PubMed ID: 29261309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired artificial single ion pump.
    Zhang H; Hou X; Zeng L; Yang F; Li L; Yan D; Tian Y; Jiang L
    J Am Chem Soc; 2013 Oct; 135(43):16102-10. PubMed ID: 23773031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic gating of ion transport in carbon nanotube porins: A modeling study.
    Yao YC; Li Z; Gillen AJ; Yosinski S; Reed MA; Noy A
    J Chem Phys; 2021 May; 154(20):204704. PubMed ID: 34241182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of the electrical double layer on giant ionic currents through single-walled carbon nanotubes.
    Bearden S; Zhang G
    Nanotechnology; 2013 Mar; 24(12):125204. PubMed ID: 23466571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbene-functionalized single-walled carbon nanotubes and their electrical properties.
    Liu C; Zhang Q; Stellacci F; Marzari N; Zheng L; Zhan Z
    Small; 2011 May; 7(9):1257-63. PubMed ID: 21485006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.
    Amiri H; Shepard KL; Nuckolls C; Hernández Sánchez R
    Nano Lett; 2017 Feb; 17(2):1204-1211. PubMed ID: 28103039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single-Pore to Multichannel Membranes.
    Zhang Z; Huang X; Qian Y; Chen W; Wen L; Jiang L
    Adv Mater; 2020 Jan; 32(4):e1904351. PubMed ID: 31793736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly organized two- and three-dimensional single-walled carbon nanotube-polymer hybrid architectures.
    Li B; Hahm MG; Kim YL; Jung HY; Kar S; Jung YJ
    ACS Nano; 2011 Jun; 5(6):4826-34. PubMed ID: 21609004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically Switchable Double-Gate Nanofluidic Logic Device as Biomimetic Ion Pumps.
    Wu MY; Li ZQ; Zhu GL; Wu ZQ; Ding XL; Huang LQ; Mo RJ; Xia XH
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32479-32485. PubMed ID: 34191482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of carbon nanotube aggregation and the reversion of carbon nanotube aggregates in aqueous medium.
    Koh B; Cheng W
    Langmuir; 2014 Sep; 30(36):10899-909. PubMed ID: 25144606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing.
    Boussaad S; Diner BA; Fan J
    J Am Chem Soc; 2008 Mar; 130(12):3780-7. PubMed ID: 18321094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes.
    Wu J; Gerstandt K; Zhang H; Liu J; Hinds BJ
    Nat Nanotechnol; 2012 Jan; 7(2):133-9. PubMed ID: 22245860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study on SWCNT and DWCNT field-effect transistors.
    Liang XL; Wang S; Duan XJ; Zhang ZY; Chen Q; Zhang J; Peng LM
    J Nanosci Nanotechnol; 2007; 7(4-5):1568-72. PubMed ID: 17450927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Floating electrode transistor based on purified semiconducting carbon nanotubes for high source-drain voltage operation.
    Lee J; Lee H; Kim T; Jin HJ; Shin J; Shin Y; Park S; Khang Y; Hong S
    Nanotechnology; 2012 Mar; 23(8):085204. PubMed ID: 22293578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-tunable ion selectivity in carbon nanotube pores.
    Fornasiero F; In JB; Kim S; Park HG; Wang Y; Grigoropoulos CP; Noy A; Bakajin O
    Langmuir; 2010 Sep; 26(18):14848-53. PubMed ID: 20715879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.