BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31877522)

  • 1. Effect of Fe addition on properties of Ti-6Al-xFe manufactured by blended elemental process.
    Sjafrizal T; Dehghan-Manshadi A; Kent D; Yan M; Dargusch MS
    J Mech Behav Biomed Mater; 2020 Feb; 102():103518. PubMed ID: 31877522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.
    Liu Y; Li K; Wu H; Song M; Wang W; Li N; Tang H
    J Mech Behav Biomed Mater; 2015 Nov; 51():302-12. PubMed ID: 26275506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.
    Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.
    Bolzoni L; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2017 Mar; 67():110-116. PubMed ID: 27988440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behaviour of novel low-cost blended elemental Ti-5Fe-xAl alloys fabricated via powder metallurgy.
    Alshammari Y; Manogar B; Raynova S; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103865. PubMed ID: 32501221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sintering and biocompatibility of blended elemental Ti-xNb alloys.
    Chen Y; Han P; Dehghan-Manshadi A; Kent D; Ehtemam-Haghighi S; Jowers C; Bermingham M; Li T; Cooper-White J; Dargusch MS
    J Mech Behav Biomed Mater; 2020 Apr; 104():103691. PubMed ID: 32174435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of alloying elements and annealing treatment on the microstructure and mechanical properties of Nb-Ta-Ti alloys fabricated by partial diffusion for biomedical applications.
    Liu J; Yang Q; Yin J; Yang H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110542. PubMed ID: 32204053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.
    Lu J; Zhao Y; Niu H; Zhang Y; Du Y; Zhang W; Huo W
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():36-44. PubMed ID: 26952395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.
    Rao X; Chu CL; Zheng YY
    J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Cu-bearing powder metallurgy Ti alloys for biomedical applications.
    Bolzoni L; Yang F
    J Mech Behav Biomed Mater; 2019 Sep; 97():41-48. PubMed ID: 31096149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2019 Jul; 95():232-239. PubMed ID: 31035037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.
    Bolzoni L; Ruiz-Navas EM; Gordo E
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():400-407. PubMed ID: 25686965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterisation of low-cost powder metallurgy Ti-xCu-2.5Al alloys produced for biomedical applications.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2022 Feb; 126():105022. PubMed ID: 34871955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2019 Mar; 91():391-397. PubMed ID: 30665199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alloy Design and Fabrication of Duplex Titanium-Based Alloys by Spark Plasma Sintering for Biomedical Implant Applications.
    Ijaz MF; Alharbi HF; Bahri YA; Sherif EM
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys.
    Xu JL; Tao SC; Bao LZ; Luo JM; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():156-165. PubMed ID: 30678900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.
    Bolzoni L; Esteban PG; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2012 Nov; 15():33-45. PubMed ID: 23026730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders.
    Bolzoni L; Esteban PG; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2012 Oct; 14():29-38. PubMed ID: 22963744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.