These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31877653)
1. Role of Pea LTPs and Abscisic Acid in Salt-Stressed Roots. Akhiyarova GR; Finkina EI; Ovchinnikova TV; Veselov DS; Kudoyarova GR Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31877653 [TBL] [Abstract][Full Text] [Related]
2. Effects of Salinity and Abscisic Acid on Lipid Transfer Protein Accumulation, Suberin Deposition and Hydraulic Conductance in Pea Roots. Akhiyarova GR; Ivanov RS; Ivanov II; Finkina EI; Melnikova DN; Bogdanov IV; Nuzhnaya T; Ovchinnikova TV; Veselov DS; Kudoyarova GR Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677528 [TBL] [Abstract][Full Text] [Related]
3. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties. Bogdanov IV; Shenkarev ZO; Finkina EI; Melnikova DN; Rumynskiy EI; Arseniev AS; Ovchinnikova TV BMC Plant Biol; 2016 Apr; 16():107. PubMed ID: 27137920 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana. Krishnaswamy SS; Srivastava S; Mohammadi M; Rahman MH; Deyholos MK; Kav NN BMC Plant Biol; 2008 Sep; 8():91. PubMed ID: 18783601 [TBL] [Abstract][Full Text] [Related]
5. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. Zdunek E; Lips SH J Exp Bot; 2001 Jun; 52(359):1269-76. PubMed ID: 11432945 [TBL] [Abstract][Full Text] [Related]
6. The Long-Distance Transport of Jasmonates in Salt-Treated Pea Plants and Involvement of Lipid Transfer Proteins in the Process. Vafina G; Akhiyarova G; Korobova A; Finkina EI; Veselov D; Ovchinnikova TV; Kudoyarova G Int J Mol Sci; 2024 Jul; 25(13):. PubMed ID: 39000596 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of OsERF106MZ promotes parental root growth in rice seedlings by relieving the ABA-mediated inhibition of root growth under salinity stress conditions. Chen HC; Huang SC; Chen YF; Kuo CW; Chen YH; Chang MC BMC Plant Biol; 2023 Mar; 23(1):144. PubMed ID: 36922804 [TBL] [Abstract][Full Text] [Related]
8. OsTPS8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. Vishal B; Krishnamurthy P; Ramamoorthy R; Kumar PP New Phytol; 2019 Feb; 221(3):1369-1386. PubMed ID: 30289560 [TBL] [Abstract][Full Text] [Related]
9. Salt Stress Promotes Abscisic Acid Accumulation to Affect Cell Proliferation and Expansion of Primary Roots in Rice. Huang Y; Zhou J; Li Y; Quan R; Wang J; Huang R; Qin H Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639232 [TBL] [Abstract][Full Text] [Related]
10. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. Horváth E; Csiszár J; Gallé Á; Poór P; Szepesi Á; Tari I J Plant Physiol; 2015 Jul; 183():54-63. PubMed ID: 26086888 [TBL] [Abstract][Full Text] [Related]
11. Expression of Pisum sativum PsAO3 gene, which encodes an aldehyde oxidase utilizing abscisic aldehyde, is induced under progressively but not rapidly imposed drought stress. Zdunek-Zastocka E; Sobczak M Plant Physiol Biochem; 2013 Oct; 71():57-66. PubMed ID: 23876699 [TBL] [Abstract][Full Text] [Related]
13. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses. Wang C; Yang C; Gao C; Wang Y Tree Physiol; 2009 Dec; 29(12):1607-19. PubMed ID: 19808707 [TBL] [Abstract][Full Text] [Related]
14. Regulation of a plant aquaporin by a Casparian strip membrane domain protein-like. Champeyroux C; Bellati J; Barberon M; Rofidal V; Maurel C; Santoni V Plant Cell Environ; 2019 Jun; 42(6):1788-1801. PubMed ID: 30767240 [TBL] [Abstract][Full Text] [Related]
16. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Moons A; Prinsen E; Bauw G; Van Montagu M Plant Cell; 1997 Dec; 9(12):2243-59. PubMed ID: 9437865 [TBL] [Abstract][Full Text] [Related]
17. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. Jiang F; Chen L; Belimov AA; Shaposhnikov AI; Gong F; Meng X; Hartung W; Jeschke DW; Davies WJ; Dodd IC J Exp Bot; 2012 Nov; 63(18):6421-30. PubMed ID: 23136167 [TBL] [Abstract][Full Text] [Related]
18. Expression of abscisic acid-responsive element-binding protein in salt-tolerant indica rice (Oryza sativa L. cv. Pokkali). Gupta S; Chattopadhyay MK; Chatterjee P; Ghosh B; SenGupta DN Plant Mol Biol; 1998 Jul; 37(4):629-37. PubMed ID: 9687067 [TBL] [Abstract][Full Text] [Related]
19. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Safi H; Saibi W; Alaoui MM; Hmyene A; Masmoudi K; Hanin M; Brini F Plant Physiol Biochem; 2015 Apr; 89():64-75. PubMed ID: 25703105 [TBL] [Abstract][Full Text] [Related]
20. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Zhang L; Garneau MG; Majumdar R; Grant J; Tegeder M Plant J; 2015 Jan; 81(1):134-46. PubMed ID: 25353986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]