These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31877691)

  • 1. IEEE 802.11-Enabled Wake-Up Radio: Use Cases and Applications.
    Lopez-Aguilera E; Demirkol I; Garcia-Villegas E; Paradells J
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bandwidth-Based Wake-Up Radio Solution through IEEE 802.11 Technology.
    Lopez-Aguilera E; Garcia-Villegas E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Analysis of Addressing Mechanisms in Inter-Operable IoT Device with Low-Power Wake-Up Radio.
    Song T; Kim T
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation and comparative analysis of SubCarrier Modulation Wake-up Radio systems for energy-efficient wireless sensor networks.
    Oller J; Demirkol I; Casademont J; Paradells J; Gamm GU; Reindl L
    Sensors (Basel); 2013 Dec; 14(1):22-51. PubMed ID: 24451452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components.
    Rinne J; Keskinen J; Berger PR; Lupo D; Valkama M
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Power RFED Wake-Up Receiver Design for Low-Cost Wireless Sensor Network Applications.
    Galante-Sempere D; Ramos-Valido D; Lalchand Khemchandani S; Del Pino J
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment.
    Pereira F; Correia R; Pinho P; Lopes SI; Carvalho NB
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling Low-Latency Bluetooth Low Energy on Energy Harvesting Batteryless Devices Using Wake-Up Radios.
    Sultania AK; Delgado C; Famaey J
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of Wake-Up Radio-Based MAC Protocols for Implantable Body Sensor Networks (IBSN)-A Survey.
    Karuppiah Ramachandran VR; Ayele ED; Meratnia N; Havinga PJ
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects.
    Abbas Z; Yoon W
    Sensors (Basel); 2015 Sep; 15(10):24818-47. PubMed ID: 26404275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resource Management for Massive Internet of Things in IEEE 802.11ah WLAN: Potentials, Current Solutions, and Open Challenges.
    Farhad A; Pyun JY
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IEEE 802.11ah: A Technology to Face the IoT Challenge.
    Baños-Gonzalez V; Afaqui MS; Lopez-Aguilera E; Garcia-Villegas E
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27879688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances and Opportunities in Passive Wake-Up Radios with Wireless Energy Harvesting for the Internet of Things Applications.
    Bello H; Xiaoping Z; Nordin R; Xin J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Authentication and Key Management Mechanism for Resource Constrained Devices in IEEE 802.11-based IoT Access Networks.
    Kim KW; Han YH; Min SG
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28934152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Battery Draining Attack and Defense against Power Saving Wireless LAN Devices.
    Lee IG; Go K; Lee JH
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Evaluation of IEEE 802.11ah Networks With High-Throughput Bidirectional Traffic.
    Šljivo A; Kerkhove D; Tian L; Famaey J; Munteanu A; Moerman I; Hoebeke J; De Poorter E
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29360798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Demand LoRa: Asynchronous TDMA for Energy Efficient and Low Latency Communication in IoT.
    Piyare R; Murphy AL; Magno M; Benini L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interference-Aware Adaptive Beam Alignment for Hyper-Dense IEEE 802.11ax Internet-of-Things Networks.
    Kwon D; Kim SW; Kim J; Mohaisen A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30304788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MIGOU: A Low-Power Experimental Platform with Programmable Logic Resources and Software-Defined Radio Capabilities.
    Utrilla R; Rodriguez-Zurrunero R; Martin J; Rozas A; Araujo A
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31731745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate Energy Modeling and Characterization of IEEE 802.11ah RAW and TWT.
    Santi S; Tian L; Khorov E; Famaey J
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.